added albe potential (still wrong energy!)
[physik/posic.git] / sic.c
1 /*
2  * sic.c - investigation of the sic precipitation process of silicon carbide
3  *
4  * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
5  *
6  */
7
8 #include <math.h>
9  
10 #include "moldyn.h"
11 #include "posic.h"
12
13 /* potential */
14 #include "potentials/harmonic_oscillator.h"
15 #include "potentials/lennard_jones.h"
16 #include "potentials/albe.h"
17
18 #ifdef TERSOFF_ORIG
19 #include "potentials/tersoff_orig.h"
20 #else
21 #include "potentials/tersoff.h"
22 #endif
23
24 #define INJECT          1
25 #define NR_ATOMS        4
26
27 int hook(void *moldyn,void *hook_params) {
28
29         t_moldyn *md;
30         t_3dvec r,v,dist;
31         double d;
32         unsigned char run;
33         int i,j;
34         t_atom *atom;
35
36         md=moldyn;
37
38         printf("\nschedule hook: ");
39
40         if(!(md->schedule.count%2)) {
41                 /* add carbon at random place, and enable t scaling */
42                 for(j=0;j<NR_ATOMS;j++) {
43                 run=1;
44                 while(run) {
45                         r.x=rand_get_double(&(md->random))*md->dim.x;
46                         r.y=rand_get_double(&(md->random))*md->dim.y;
47                         r.z=rand_get_double(&(md->random))*md->dim.z;
48                         for(i=0;i<md->count;i++) {
49                                 atom=&(md->atom[i]);
50                                 v3_sub(&dist,&(atom->r),&r);
51                                 d=v3_absolute_square(&dist);
52                                 if(d>TM_R_C)
53                                         run=0;
54                         }
55                 }
56                 v.x=0; v.y=0; v.z=0;
57                 add_atom(md,C,M_C,1,
58                          ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
59                          &r,&v);
60                 }
61                 printf("adding atoms & enable t scaling\n");
62                 set_pt_scale(md,0,0,T_SCALE_BERENDSEN,100.0);
63         }
64         else {
65                 /* disable t scaling */
66                 printf("disabling t scaling\n");
67                 set_pt_scale(md,0,0,0,0);
68         }
69
70         return 0;
71 }
72
73 int main(int argc,char **argv) {
74
75         /* check argv */
76         if(argc!=3) {
77                 printf("[sic] usage: %s <logdir> <temperatur>\n",argv[0]);
78                 return -1;
79         }
80
81         /* main moldyn structure */
82         t_moldyn md;
83
84         /* potential parameters */
85         t_lj_params lj;
86         t_ho_params ho;
87         t_tersoff_mult_params tp;
88         t_albe_mult_params ap;
89
90         /* atom injection counter */
91         int inject;
92
93         /* testing location & velocity vector */
94         t_3dvec r,v;
95         memset(&r,0,sizeof(t_3dvec));
96         memset(&v,0,sizeof(t_3dvec));
97
98         /* initialize moldyn */
99         moldyn_init(&md,argc,argv);
100
101         /* choose integration algorithm */
102         set_int_alg(&md,MOLDYN_INTEGRATE_VERLET);
103
104         /* choose potential */
105         set_potential1b(&md,tersoff_mult_1bp);
106 #ifdef TERSOFF_ORIG
107         set_potential3b_j1(&md,tersoff_mult_2bp);
108         set_potential3b_k1(&md,tersoff_mult_3bp);
109         set_potential3b_j2(&md,tersoff_mult_post_2bp);
110 #elif ALBE
111         set_potential1b(&md,albe_mult_1bp);
112         set_potential3b_j1(&md,albe_mult_3bp_j1);
113         set_potential3b_k1(&md,albe_mult_3bp_k1);
114         set_potential3b_j2(&md,albe_mult_3bp_j2);
115         set_potential3b_k2(&md,albe_mult_3bp_k2);
116 #else
117         set_potential3b_j1(&md,tersoff_mult_3bp_j1);
118         set_potential3b_k1(&md,tersoff_mult_3bp_k1);
119         set_potential3b_j2(&md,tersoff_mult_3bp_j2);
120         set_potential3b_k2(&md,tersoff_mult_3bp_k2);
121 #endif
122         //set_potential2b(&md,lennard_jones);
123         //set_potential2b(&md,harmonic_oscillator);
124
125 #ifdef ALBE
126         set_potential_params(&md,&ap);
127 #else
128         set_potential_params(&md,&tp);
129 #endif
130         //set_potential_params(&md,&lj);
131         //set_potential_params(&md,&ho);
132
133         /* cutoff radius */
134         set_cutoff(&md,ALBE_S_SI);
135         //set_cutoff(&md,TM_S_SI);
136         //set_cutoff(&md,LC_SI*sqrt(3.0));
137         //set_cutoff(&md,2.0*LC_SI);
138
139         /*
140          * potential parameters
141          */
142
143         /* lennard jones */
144         lj.sigma6=LJ_SIGMA_SI*LJ_SIGMA_SI*LJ_SIGMA_SI;
145         lj.sigma6*=lj.sigma6;
146         lj.sigma12=lj.sigma6*lj.sigma6;
147         lj.epsilon4=4.0*LJ_EPSILON_SI;
148         lj.uc=lj.epsilon4*(lj.sigma12/pow(md.cutoff,12.0)-lj.sigma6/pow(md.cutoff,6));
149
150         /* harmonic oscillator */
151         ho.equilibrium_distance=0.25*sqrt(3.0)*LC_SI;
152         //ho.equilibrium_distance=LC_SI;
153         ho.spring_constant=LJ_EPSILON_SI;
154
155         /*
156          * tersoff mult potential parameters for SiC
157          */
158         tp.S[0]=TM_S_SI;
159         tp.R[0]=TM_R_SI;
160         tp.A[0]=TM_A_SI;
161         tp.B[0]=TM_B_SI;
162         tp.lambda[0]=TM_LAMBDA_SI;
163         tp.mu[0]=TM_MU_SI;
164         tp.beta[0]=TM_BETA_SI;
165         tp.n[0]=TM_N_SI;
166         tp.c[0]=TM_C_SI;
167         tp.d[0]=TM_D_SI;
168         tp.h[0]=TM_H_SI;
169
170         tp.S[1]=TM_S_C;
171         tp.R[1]=TM_R_C;
172         tp.A[1]=TM_A_C;
173         tp.B[1]=TM_B_C;
174         tp.lambda[1]=TM_LAMBDA_C;
175         tp.mu[1]=TM_MU_C;
176         tp.beta[1]=TM_BETA_C;
177         tp.n[1]=TM_N_C;
178         tp.c[1]=TM_C_C;
179         tp.d[1]=TM_D_C;
180         tp.h[1]=TM_H_C;
181
182         tp.chi=TM_CHI_SIC;
183
184         tersoff_mult_complete_params(&tp);
185
186         /*
187          * albe mult potential parameters for SiC
188          */
189         ap.S[0]=ALBE_S_SI;
190         ap.R[0]=ALBE_R_SI;
191         ap.A[0]=ALBE_A_SI;
192         ap.B[0]=ALBE_B_SI;
193         ap.r0[0]=ALBE_R0_SI;
194         ap.lambda[0]=ALBE_LAMBDA_SI;
195         ap.mu[0]=ALBE_MU_SI;
196         ap.gamma[0]=ALBE_GAMMA_SI;
197         ap.c[0]=ALBE_C_SI;
198         ap.d[0]=ALBE_D_SI;
199         ap.h[0]=ALBE_H_SI;
200
201         ap.S[1]=ALBE_S_C;
202         ap.R[1]=ALBE_R_C;
203         ap.A[1]=ALBE_A_C;
204         ap.B[1]=ALBE_B_C;
205         ap.r0[1]=ALBE_R0_C;
206         ap.lambda[1]=ALBE_LAMBDA_C;
207         ap.mu[1]=ALBE_MU_C;
208         ap.gamma[1]=ALBE_GAMMA_C;
209         ap.c[1]=ALBE_C_C;
210         ap.d[1]=ALBE_D_C;
211         ap.h[1]=ALBE_H_C;
212
213         ap.Smixed=ALBE_S_SIC;
214         ap.Rmixed=ALBE_R_SIC;
215         ap.Amixed=ALBE_A_SIC;
216         ap.Bmixed=ALBE_B_SIC;
217         ap.r0_mixed=ALBE_R0_SIC;
218         ap.lambda_m=ALBE_LAMBDA_SIC;
219         ap.mu_m=ALBE_MU_SIC;
220
221         albe_mult_complete_params(&ap);
222
223         /* set (initial) dimensions of simulation volume */
224         set_dim(&md,6*LC_SI,6*LC_SI,6*LC_SI,TRUE);
225         //set_dim(&md,6*LC_C,6*LC_C,6*LC_C,TRUE);
226         //set_dim(&md,6*TM_LC_3C_SIC,6*TM_LC_3C_SIC,6*TM_LC_3C_SIC,TRUE);
227
228         /* set periodic boundary conditions in all directions */
229         set_pbc(&md,TRUE,TRUE,TRUE);
230
231         /* create the lattice / place atoms */
232         //create_lattice(&md,CUBIC,LC_SI,SI,M_SI,
233         //create_lattice(&md,FCC,LC_SI,SI,M_SI,
234         create_lattice(&md,DIAMOND,LC_SI,SI,M_SI,
235         //create_lattice(&md,DIAMOND,LC_C,C,M_C,
236                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
237         //               ATOM_ATTR_2BP|ATOM_ATTR_HB,
238                        0,6,6,6,NULL);
239         //               1,6,6,6,NULL);
240
241         /* create centered zinc blende lattice */
242         //r.x=0.5*0.25*TM_LC_3C_SIC; r.y=r.x; r.z=r.x;
243         //create_lattice(&md,FCC,TM_LC_3C_SIC,SI,M_SI,
244         //               ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
245         //               0,6,6,6,&r);
246         //r.x+=0.25*TM_LC_3C_SIC; r.y=r.x; r.z=r.x;
247         //create_lattice(&md,FCC,TM_LC_3C_SIC,C,M_C,
248         //               ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
249         //               1,6,6,6,&r);
250
251         moldyn_bc_check(&md);
252
253         /* testing configuration */
254         //r.x=0.27*sqrt(3.0)*LC_SI/2.0; v.x=0;
255         //r.x=(TM_S_SI+TM_R_SI)/4.0;    v.x=0;
256         //r.y=0;                v.y=0;
257         //r.z=0;                v.z=0;
258         //add_atom(&md,SI,M_SI,0,
259         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
260         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
261         //           &r,&v);
262         //r.x=-r.x;     v.x=-v.x;
263         //r.y=0;                v.y=0;
264         //r.z=0;                v.z=0;
265         //add_atom(&md,SI,M_SI,0,
266         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
267         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
268         //           &r,&v);
269         //r.z=0.27*sqrt(3.0)*LC_SI/2.0; v.z=0;
270         //r.x=(TM_S_SI+TM_R_SI)/4.0;    v.x=0;
271         //r.y=0;                v.y=0;
272         //r.x=0;                v.x=0;
273         //add_atom(&md,SI,M_SI,0,
274         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
275         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
276         //           &r,&v);
277         //r.z=-r.z;     v.z=-v.z;
278         //r.y=0;                v.y=0;
279         //r.x=0;                v.x=0;
280         //add_atom(&md,SI,M_SI,0,
281         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
282         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
283         //           &r,&v);
284
285         /* set temperature & pressure */
286         set_temperature(&md,atof(argv[2])+273.0);
287         set_pressure(&md,BAR);
288
289         /* set p/t scaling */
290         //set_pt_scale(&md,P_SCALE_BERENDSEN,0.001,
291         //                 T_SCALE_BERENDSEN,100.0);
292         //set_pt_scale(&md,0,0,T_SCALE_DIRECT,1.0);
293         //set_pt_scale(&md,P_SCALE_BERENDSEN,0.001,0,0);
294         
295         /* initial thermal fluctuations of particles (in equilibrium) */
296         thermal_init(&md,TRUE);
297
298         /* create the simulation schedule */
299         /* initial configuration */
300         moldyn_add_schedule(&md,100,1.0);
301         /* adding atoms */
302         //for(inject=0;inject<INJECT;inject++) {
303         //      /* injecting atom and run with enabled t scaling */
304         //      moldyn_add_schedule(&md,900,1.0);
305         //      /* continue running with disabled t scaling */
306         //      moldyn_add_schedule(&md,1100,1.0);
307         //}
308
309         /* schedule hook function */
310         moldyn_set_schedule_hook(&md,&hook,NULL);
311
312         /* activate logging */
313         moldyn_set_log_dir(&md,argv[1]);
314         moldyn_set_report(&md,"Frank Zirkelbach","Test 1");
315         moldyn_set_log(&md,LOG_TOTAL_ENERGY,1);
316         moldyn_set_log(&md,LOG_TEMPERATURE,1);
317         moldyn_set_log(&md,LOG_PRESSURE,1);
318         moldyn_set_log(&md,VISUAL_STEP,1);
319         moldyn_set_log(&md,SAVE_STEP,1);
320         moldyn_set_log(&md,CREATE_REPORT,0);
321
322         /*
323          * let's do the actual md algorithm now
324          *
325          * integration of newtons equations
326          */
327         moldyn_integrate(&md);
328 #ifdef DEBUG
329 return 0;
330 #endif
331
332         /* close */
333         moldyn_shutdown(&md);
334         
335         return 0;
336 }
337