implemented basic p ctrl stuff + video with 13 fps
[physik/posic.git] / sic.c
1 /*
2  * sic.c - investigation of the sic precipitation process of silicon carbide
3  *
4  * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
5  *
6  */
7
8 #include <math.h>
9  
10 #include "moldyn.h"
11
12 /* potential */
13 #include "potentials/harmonic_oscillator.h"
14 #include "potentials/lennard_jones.h"
15 #include "potentials/albe.h"
16 #ifdef TERSOFF_ORIG
17 #include "potentials/tersoff_orig.h"
18 #else
19 #include "potentials/tersoff.h"
20 #endif
21
22 typedef struct s_hp {
23         int prerun_count;       /* prerun count */
24         int insert_count;       /* insert count */
25         int postrun_count;      /* post run count */
26         unsigned char state;    /* current state */
27         int argc;               /* arg count */
28         char **argv;            /* args */
29 } t_hp;
30
31 #define STATE_PRERUN    0x00
32 #define STATE_INSERT    0x01
33 #define STATE_POSTRUN   0x02
34
35 /* include the config file */
36 #include "config.h"
37
38 int insert_atoms(t_moldyn *moldyn) {
39
40         int i,j;
41         u8 run;
42         t_3dvec r,v,dist;
43         double d,dmin;
44
45         t_atom *atom;
46
47         atom=moldyn->atom;
48
49         v.x=0; v.y=0; v.z=0;
50
51         for(j=0;j<INS_ATOMS;j++) {
52                 run=1;
53                 while(run) {
54 #ifdef INS_TETRA
55                         // tetrahedral
56                         r.x=0.0;
57                         r.y=0.0;
58                         r.z=0.0;
59 #endif
60 #ifdef INS_HEXA
61                         // hexagonal
62                         r.x=-1.0/8.0*ALBE_LC_SI;
63                         r.y=-1.0/8.0*ALBE_LC_SI;
64                         r.z=1.0/8.0*ALBE_LC_SI;
65 #endif
66 #ifdef INS_110DB
67                         // 110 dumbbell
68                         r.x=(-0.5+0.25+0.125)*ALBE_LC_SI;
69                         r.y=(-0.5+0.25+0.125)*ALBE_LC_SI;
70                         r.z=(-0.5+0.25)*ALBE_LC_SI;
71                         moldyn->atom[4372].r.x=(-0.5+0.125+0.125)*ALBE_LC_SI;
72                         moldyn->atom[4372].r.y=(-0.5+0.125+0.125)*ALBE_LC_SI;
73 #endif
74 #ifdef INS_001DB
75                         // 001 dumbbell
76                         r.x=(-0.5+0.25)*ALBE_LC_SI;
77                         r.y=(-0.5+0.25)*ALBE_LC_SI;
78                         r.z=(-0.1)*ALBE_LC_SI;
79                         moldyn->atom[4372].r.z=(-0.4)*ALBE_LC_SI;
80 #endif
81 #ifdef INS_USER
82                         // 001 dumbbell
83                         r.x=INS_UX*ALBE_LC_SI;
84                         r.y=INS_UY*ALBE_LC_SI;
85                         r.z=INS_UZ*ALBE_LC_SI;
86 #endif
87 #ifdef INS_RAND
88                         // random
89 #ifdef INS_DYNAMIC_LEN
90                         r.x=(rand_get_double(&(moldyn->random))-0.5)*\
91                             moldyn->dim.x;
92                         r.y=(rand_get_double(&(moldyn->random))-0.5)*\
93                             moldyn->dim.y;
94                         r.z=(rand_get_double(&(moldyn->random))-0.5)*\
95                             moldyn->dim.z;
96 #else
97                         r.x=(rand_get_double(&(moldyn->random))-0.5)*INS_LENX;
98                         r.y=(rand_get_double(&(moldyn->random))-0.5)*INS_LENY;
99                         r.z=(rand_get_double(&(moldyn->random))-0.5)*INS_LENZ;
100 #endif
101 #endif
102                         // offset
103                         r.x+=INS_OFFSET;
104                         r.y+=INS_OFFSET;
105                         r.z+=INS_OFFSET;
106                         /* assume valid coordinates */
107                         run=0;
108                         dmin=10000000000.0;             // for sure too high!
109                         for(i=0;i<moldyn->count;i++) {
110                                 atom=&(moldyn->atom[i]);
111                                 v3_sub(&dist,&(atom->r),&r);
112                                 check_per_bound(moldyn,&dist);
113                                 d=v3_absolute_square(&dist);
114                                 /* reject coordinates */
115                                 if(d<INS_R_C) {
116                                         //printf("atom %d - %f\n",i,d);
117                                         run=1;
118                                         break;
119                                 }
120                                 if(d<dmin)
121                                         dmin=d;
122                         }
123                 }
124                 add_atom(moldyn,INS_TYPE,INS_MASS,INS_BRAND,
125                          ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|\
126                          INS_ATTR,
127                          &r,&v);
128                 printf(" %02d: atom %d | %f %f %f | %f\n",
129                        j,moldyn->count-1,r.x,r.y,r.z,dmin);
130         }
131
132         return 0;
133 }
134
135 int sic_hook(void *moldyn,void *hook_params) {
136
137         t_hp *hp;
138         t_moldyn *md;
139         int steps;
140         double tau;
141         double dt;
142         double dp;
143
144         hp=hook_params;
145         md=moldyn;
146
147         tau=1.0;
148         steps=0;
149
150         /* switch on t scaling */
151         if(md->schedule.count==0)
152                 set_pt_scale(md,P_SCALE_BERENDSEN,P_SCALE_TAU,
153                                 T_SCALE_BERENDSEN,T_SCALE_TAU);
154
155         /* my lousy state machine ! */
156
157         /* switch to insert state immediately */
158         if(hp->state==STATE_PRERUN)
159                 hp->state=STATE_INSERT;
160         
161         switch(hp->state) {
162                 case STATE_INSERT:
163                         goto insert;
164                         break;
165                 case STATE_POSTRUN:
166                         goto postrun;
167                         break;
168                 default:
169                         printf("[sic hook] unknown state\n");
170                         return -1;
171         }
172
173         /* act according to state */
174
175 insert:
176
177         /* assigne values */
178         steps=INS_RELAX;
179         tau=INS_TAU;
180
181         /* check temperature */
182         dt=md->t_avg-md->t_ref;
183         dp=md->p_avg-md->p_ref;
184         if(dt<0)
185                 dt=-dt;
186         if(dp<0)
187                 dp=-dp;
188         if((dt>INS_DELTA_TC)|(dp>INS_DELTA_PC))
189                 goto addsched;
190
191         /* immediately go on if no job is to be done */
192         if(hp->insert_count==INS_RUNS) {
193                 printf("    --- leaving insert state ---\n");
194                 hp->state=STATE_POSTRUN;
195                 goto postrun;
196         }
197
198         /* else -> insert atoms */
199         hp->insert_count+=1;
200         printf("   ### insert atoms (%d/%d) ###\n",
201                hp->insert_count*INS_ATOMS,INS_RUNS*INS_ATOMS);
202         insert_atoms(md);
203         goto addsched;
204
205 postrun:
206
207         /* assigne values */
208         steps=POST_RELAX;
209         tau=POST_TAU;
210
211         /* check temperature */
212         dt=md->t_avg-md->t_ref;
213         dp=md->p_avg-md->p_ref;
214         if(dt<0)
215                 dt=-dt;
216         if(dp<0)
217                 dp=-dp;
218         if((dt>POST_DELTA_TC)|(dp>POST_DELTA_PC))
219                 goto addsched;
220
221         /* immediately return if no job is to be done */
222         if(hp->postrun_count==POST_RUNS) {
223                 printf("    --- leaving post run state ---\n");
224                 return 0;
225         }
226
227         /* postrun action */
228         hp->postrun_count+=1;
229         printf(" ### postrun (%d/%d) ###\n",
230                hp->postrun_count,POST_RUNS);
231         set_temperature(md,md->t_ref-POST_DT);
232
233 addsched:
234
235         /* reset the average counters */
236         average_reset(md);
237
238         /* add schedule */
239         moldyn_add_schedule(md,steps,tau);
240
241         return 0;
242 }
243
244 int main(int argc,char **argv) {
245
246         /* main moldyn structure */
247         t_moldyn md;
248
249         /* hook parameter structure */
250         t_hp hookparam;
251
252         /* potential parameters */
253         t_tersoff_mult_params tp;
254         t_albe_mult_params ap;
255
256         /* testing location & velocity vector */
257         t_3dvec r,v;
258         memset(&r,0,sizeof(t_3dvec));
259         memset(&v,0,sizeof(t_3dvec));
260
261         /* initialize moldyn */
262         moldyn_init(&md,argc,argv);
263
264         /* choose integration algorithm */
265         set_int_alg(&md,MOLDYN_INTEGRATE_VERLET);
266
267         /* choose potential */
268 #ifdef ALBE
269         set_potential3b_j1(&md,albe_mult_3bp_j1);
270         set_potential3b_k1(&md,albe_mult_3bp_k1);
271         set_potential3b_j2(&md,albe_mult_3bp_j2);
272         set_potential3b_k2(&md,albe_mult_3bp_k2);
273 #else
274         set_potential1b(&md,tersoff_mult_1bp);
275         set_potential3b_j1(&md,tersoff_mult_3bp_j1);
276         set_potential3b_k1(&md,tersoff_mult_3bp_k1);
277         set_potential3b_j2(&md,tersoff_mult_3bp_j2);
278         set_potential3b_k2(&md,tersoff_mult_3bp_k2);
279 #endif
280
281 #ifdef ALBE
282         set_potential_params(&md,&ap);
283 #else
284         set_potential_params(&md,&tp);
285 #endif
286
287         /* cutoff radius & bondlen */
288 #ifdef ALBE
289         set_cutoff(&md,ALBE_S_SI);
290         set_bondlen(&md,ALBE_S_SI,ALBE_S_C,ALBE_S_SIC);
291         //set_cutoff(&md,ALBE_S_C);
292 #else
293         set_cutoff(&md,TM_S_SI);
294         set_bondlen(&md,TM_S_SI,TM_S_C,-1.0);
295         //set_cutoff(&md,TM_S_C);
296 #endif
297
298         /*
299          * potential parameters
300          */
301
302         /*
303          * tersoff mult potential parameters for SiC
304          */
305         tp.S[0]=TM_S_SI;
306         tp.R[0]=TM_R_SI;
307         tp.A[0]=TM_A_SI;
308         tp.B[0]=TM_B_SI;
309         tp.lambda[0]=TM_LAMBDA_SI;
310         tp.mu[0]=TM_MU_SI;
311         tp.beta[0]=TM_BETA_SI;
312         tp.n[0]=TM_N_SI;
313         tp.c[0]=TM_C_SI;
314         tp.d[0]=TM_D_SI;
315         tp.h[0]=TM_H_SI;
316
317         tp.S[1]=TM_S_C;
318         tp.R[1]=TM_R_C;
319         tp.A[1]=TM_A_C;
320         tp.B[1]=TM_B_C;
321         tp.lambda[1]=TM_LAMBDA_C;
322         tp.mu[1]=TM_MU_C;
323         tp.beta[1]=TM_BETA_C;
324         tp.n[1]=TM_N_C;
325         tp.c[1]=TM_C_C;
326         tp.d[1]=TM_D_C;
327         tp.h[1]=TM_H_C;
328
329         tp.chi=TM_CHI_SIC;
330
331         tersoff_mult_complete_params(&tp);
332
333         /*
334          * albe mult potential parameters for SiC
335          */
336         ap.S[0]=ALBE_S_SI;
337         ap.R[0]=ALBE_R_SI;
338         ap.A[0]=ALBE_A_SI;
339         ap.B[0]=ALBE_B_SI;
340         ap.r0[0]=ALBE_R0_SI;
341         ap.lambda[0]=ALBE_LAMBDA_SI;
342         ap.mu[0]=ALBE_MU_SI;
343         ap.gamma[0]=ALBE_GAMMA_SI;
344         ap.c[0]=ALBE_C_SI;
345         ap.d[0]=ALBE_D_SI;
346         ap.h[0]=ALBE_H_SI;
347
348         ap.S[1]=ALBE_S_C;
349         ap.R[1]=ALBE_R_C;
350         ap.A[1]=ALBE_A_C;
351         ap.B[1]=ALBE_B_C;
352         ap.r0[1]=ALBE_R0_C;
353         ap.lambda[1]=ALBE_LAMBDA_C;
354         ap.mu[1]=ALBE_MU_C;
355         ap.gamma[1]=ALBE_GAMMA_C;
356         ap.c[1]=ALBE_C_C;
357         ap.d[1]=ALBE_D_C;
358         ap.h[1]=ALBE_H_C;
359
360         ap.Smixed=ALBE_S_SIC;
361         ap.Rmixed=ALBE_R_SIC;
362         ap.Amixed=ALBE_A_SIC;
363         ap.Bmixed=ALBE_B_SIC;
364         ap.r0_mixed=ALBE_R0_SIC;
365         ap.lambda_m=ALBE_LAMBDA_SIC;
366         ap.mu_m=ALBE_MU_SIC;
367         ap.gamma_m=ALBE_GAMMA_SIC;
368         ap.c_mixed=ALBE_C_SIC;
369         ap.d_mixed=ALBE_D_SIC;
370         ap.h_mixed=ALBE_H_SIC;
371
372         albe_mult_complete_params(&ap);
373
374         /* set (initial) dimensions of simulation volume */
375 #ifdef ALBE
376  #ifdef INIT_SI
377         set_dim(&md,LCNTX*ALBE_LC_SI,LCNTY*ALBE_LC_SI,LCNTZ*ALBE_LC_SI,TRUE);
378  #endif
379  #ifdef INIT_C
380         set_dim(&md,LCNTX*ALBE_LC_C,LCNTY*ALBE_LC_C,LCNTZ*ALBE_LC_C,TRUE);
381  #endif
382  #ifdef INIT_3CSIC
383         set_dim(&md,LCNTX*ALBE_LC_SIC,LCNTY*ALBE_LC_SIC,LCNTZ*ALBE_LC_SIC,TRUE);
384  #endif
385 #else
386  #ifdef INIT_SI
387         set_dim(&md,LCNTX*LC_SI,LCNTY*LC_SI,LCNTZ*LC_SI,TRUE);
388  #endif
389  #ifdef INIT_C
390         set_dim(&md,LCNTX*LC_C,LCNTY*LC_C,LCNTZ*LC_C,TRUE);
391  #endif
392  #ifdef INIT_3CSIC
393         set_dim(&md,LCNTX*TM_LC_SIC,LCNTY*TM_LC_SIC,LCNTZ*TM_LC_SIC,TRUE);
394  #endif
395 #endif
396
397         /* set periodic boundary conditions in all directions */
398         set_pbc(&md,TRUE,TRUE,TRUE);
399
400         /* create the lattice / place atoms */
401
402         // diamond
403 #ifdef ALBE
404  #ifdef INIT_SI
405         create_lattice(&md,DIAMOND,ALBE_LC_SI,SI,M_SI,
406                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
407                        0,LCNTX,LCNTY,LCNTZ,NULL);
408  #endif
409  #ifdef INIT_C
410         create_lattice(&md,DIAMOND,ALBE_LC_C,C,M_C,
411                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
412                        1,LCNTX,LCNTY,LCNTZ,NULL);
413  #endif
414 #else
415  #ifdef INIT_SI
416         create_lattice(&md,DIAMOND,LC_SI,SI,M_SI,
417                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
418                        0,LCNTX,LCNTY,LCNTZ,NULL);
419  #endif
420  #ifdef INIT_C
421         create_lattice(&md,DIAMOND,LC_C,SI,M_SI,
422                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
423                        1,LCNTX,LCNTY,LCNTZ,NULL);
424  #endif
425 #endif
426
427         // zinkblende 
428 #ifdef INIT_3CSIC
429  #ifdef ALBE
430         r.x=0.5*0.25*ALBE_LC_SIC; r.y=r.x; r.z=r.x;
431         create_lattice(&md,FCC,ALBE_LC_SIC,SI,M_SI,
432                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
433                        0,LCNTX,LCNTY,LCNTZ,&r);
434         r.x+=0.25*ALBE_LC_SIC; r.y=r.x; r.z=r.x;
435         create_lattice(&md,FCC,ALBE_LC_SIC,C,M_C,
436                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB|ATOM_ATTR_VB,
437                        1,LCNTX,LCNTY,LCNTZ,&r);
438  #else
439         r.x=0.5*0.25*TM_LC_SIC; r.y=r.x; r.z=r.x;
440         create_lattice(&md,FCC,TM_LC_SIC,SI,M_SI,
441                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
442                        0,LCNTX,LCNTY,LCNTZ,&r);
443         r.x+=0.25*TM_LC_SIC; r.y=r.x; r.z=r.x;
444         create_lattice(&md,FCC,TM_LC_SIC,C,M_C,
445                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
446                        1,LCNTX,LCNTY,LCNTZ,&r);
447  #endif
448 #endif
449
450         /* check for right atom placing */
451         moldyn_bc_check(&md);
452
453         /* testing configuration */
454         //r.x=0.27*sqrt(3.0)*LC_SI/2.0; v.x=0;
455         //r.x=(TM_S_SI+TM_R_SI)/4.0;    v.x=0;
456         //r.y=0;                v.y=0;
457         //r.z=0;                v.z=0;
458         //add_atom(&md,SI,M_SI,0,
459         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
460         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
461         //           &r,&v);
462         //r.x=-r.x;     v.x=-v.x;
463         //r.y=0;                v.y=0;
464         //r.z=0;                v.z=0;
465         //add_atom(&md,SI,M_SI,0,
466         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
467         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
468         //           &r,&v);
469         //r.z=0.27*sqrt(3.0)*LC_SI/2.0; v.z=0;
470         //r.x=(TM_S_SI+TM_R_SI)/4.0;    v.x=0;
471         //r.y=0;                v.y=0;
472         //r.x=0;                v.x=0;
473         //add_atom(&md,SI,M_SI,0,
474         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
475         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
476         //           &r,&v);
477         //r.z=-r.z;     v.z=-v.z;
478         //r.y=0;                v.y=0;
479         //r.x=0;                v.x=0;
480         //add_atom(&md,SI,M_SI,0,
481         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
482         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
483         //           &r,&v);
484
485         /* set temperature & pressure */
486         set_temperature(&md,atof(argv[2])+273.0);
487         set_pressure(&md,0.0);
488
489         /* set amount of steps to skip before average calc */
490         set_avg_skip(&md,AVG_SKIP);
491
492         /* set p/t scaling */
493         //set_pt_scale(&md,0,0,T_SCALE_BERENDSEN,100.0);
494         //set_pt_scale(&md,P_SCALE_BERENDSEN,0.01/(100*GPA),
495         //                 T_SCALE_BERENDSEN,100.0);
496         //set_pt_scale(&md,0,0,T_SCALE_DIRECT,1.0);
497         //set_pt_scale(&md,P_SCALE_BERENDSEN,0.001,0,0);
498         
499         /* initial thermal fluctuations of particles (in equilibrium) */
500         thermal_init(&md,TRUE);
501
502         /* create the simulation schedule */
503         moldyn_add_schedule(&md,PRERUN,PRE_TAU);
504
505         /* schedule hook function */
506         memset(&hookparam,0,sizeof(t_hp));
507         hookparam.argc=argc;
508         hookparam.argv=argv;
509         moldyn_set_schedule_hook(&md,&sic_hook,&hookparam);
510         //moldyn_set_schedule_hook(&md,&hook_del_atom,&hookparam);
511         //moldyn_add_schedule(&md,POSTRUN,1.0);
512
513         /* activate logging */
514         moldyn_set_log_dir(&md,argv[1]);
515         moldyn_set_report(&md,"Frank Zirkelbach",R_TITLE);
516         moldyn_set_log(&md,LOG_TOTAL_ENERGY,LOG_E);
517         moldyn_set_log(&md,LOG_TEMPERATURE,LOG_T);
518         moldyn_set_log(&md,LOG_PRESSURE,LOG_P);
519         moldyn_set_log(&md,LOG_VOLUME,LOG_V);
520         moldyn_set_log(&md,VISUAL_STEP,LOG_A);
521         moldyn_set_log(&md,SAVE_STEP,LOG_S);
522         moldyn_set_log(&md,CREATE_REPORT,0);
523
524         /* next neighbour distance for critical checking */
525         set_nn_dist(&md,0.25*ALBE_LC_SI*sqrt(3.0));
526
527         /*
528          * let's do the actual md algorithm now
529          *
530          * integration of newtons equations
531          */
532         moldyn_integrate(&md);
533 #ifdef dEBUG
534 return 0;
535 #endif
536
537         /*
538          * post processing the data
539          */
540
541         /* close */
542         moldyn_shutdown(&md);
543         
544         return 0;
545 }
546