increased relaxation steps + introduced average reset + added critical
[physik/posic.git] / sic.c
1 /*
2  * sic.c - investigation of the sic precipitation process of silicon carbide
3  *
4  * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
5  *
6  */
7
8 #include <math.h>
9  
10 #include "moldyn.h"
11
12 /* potential */
13 #include "potentials/harmonic_oscillator.h"
14 #include "potentials/lennard_jones.h"
15 #include "potentials/albe.h"
16 #ifdef TERSOFF_ORIG
17 #include "potentials/tersoff_orig.h"
18 #else
19 #include "potentials/tersoff.h"
20 #endif
21
22 typedef struct s_hp {
23         int prerun_count;       /* prerun count */
24         int insert_count;       /* insert count */
25         int postrun_count;      /* post run count */
26         unsigned char state;    /* current state */
27         int argc;               /* arg count */
28         char **argv;            /* args */
29 } t_hp;
30
31 #define STATE_PRERUN    0x00
32 #define STATE_INSERT    0x01
33 #define STATE_POSTRUN   0x02
34
35 /* include the config file */
36 #include "config.h"
37
38 int insert_atoms(t_moldyn *moldyn) {
39
40         int i,j;
41         u8 run;
42         t_3dvec r,v,dist;
43         double d,dmin;
44
45         t_atom *atom;
46
47         atom=moldyn->atom;
48
49         v.x=0; v.y=0; v.z=0;
50
51         for(j=0;j<INS_ATOMS;j++) {
52                 run=1;
53                 while(run) {
54                         // tetrahedral
55                         /*
56                         r.x=0.0;
57                         r.y=0.0;
58                         r.z=0.0;
59                         */
60                         // hexagonal
61                         /*
62                         r.x=-1.0/8.0*ALBE_LC_SI;
63                         r.y=-1.0/8.0*ALBE_LC_SI;
64                         r.z=1.0/8.0*ALBE_LC_SI;
65                         */
66                         // 110 dumbbell
67                         /*
68                         r.x=(-0.5+0.25+0.125)*ALBE_LC_SI;
69                         r.y=(-0.5+0.25+0.125)*ALBE_LC_SI;
70                         r.z=(-0.5+0.25)*ALBE_LC_SI;
71                         md->atom[4372].r.x=(-0.5+0.125+0.125)*ALBE_LC_SI;
72                         md->atom[4372].r.y=(-0.5+0.125+0.125)*ALBE_LC_SI;
73                         */
74                         // random
75                         //
76                         r.x=(rand_get_double(&(moldyn->random))-0.5)*INS_LENX;
77                         r.y=(rand_get_double(&(moldyn->random))-0.5)*INS_LENY;
78                         r.z=(rand_get_double(&(moldyn->random))-0.5)*INS_LENZ;
79                         //
80                         // offset
81                         r.x+=INS_OFFSET;
82                         r.y+=INS_OFFSET;
83                         r.z+=INS_OFFSET;
84                         /* assume valid coordinates */
85                         run=0;
86                         dmin=10000000000.0;             // for sure too high!
87                         for(i=0;i<moldyn->count;i++) {
88                                 atom=&(moldyn->atom[i]);
89                                 v3_sub(&dist,&(atom->r),&r);
90                                 check_per_bound(moldyn,&dist);
91                                 d=v3_absolute_square(&dist);
92                                 /* reject coordinates */
93                                 if(d<INS_R_C) {
94                                         //printf("atom %d - %f\n",i,d);
95                                         run=1;
96                                         break;
97                                 }
98                                 if(d<dmin)
99                                         dmin=d;
100                         }
101                 }
102                 add_atom(moldyn,INS_TYPE,INS_MASS,INS_BRAND,
103                          ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|\
104                          //ATOM_ATTR_HB|ATOM_ATTR_VB,
105                          ATOM_ATTR_HB,
106                          &r,&v);
107                 printf(" %02d: atom %d | %f %f %f | %f\n",
108                        j,moldyn->count-1,r.x,r.y,r.z,dmin);
109         }
110
111         return 0;
112 }
113
114 int sic_hook(void *moldyn,void *hook_params) {
115
116         t_hp *hp;
117         t_moldyn *md;
118         int steps;
119         double tau;
120         double dt;
121
122         hp=hook_params;
123         md=moldyn;
124
125         /* switch on t scaling */
126         if(md->schedule.count==0)
127                 set_pt_scale(md,0,0,T_SCALE_BERENDSEN,100.0);
128
129         /* my lousy state machine ! */
130
131         /* switch to insert state immediately */
132         if(hp->state==STATE_PRERUN)
133                 hp->state=STATE_INSERT;
134
135         /* act according to state */
136         switch(hp->state) {
137                 case STATE_INSERT:
138                         /* assigne values */
139                         steps=INS_RELAX;
140                         tau=INS_TAU;
141                         /* check temperature */
142                         dt=md->t_avg-md->t_ref;
143                         if(dt<0)
144                                 dt=-dt;
145                         if(dt>INS_DELTA_TC)
146                                 break;
147                         /* insert atoms */
148                         hp->insert_count+=1;
149                         printf("   ### insert atoms (%d/%d) ###\n",
150                                hp->insert_count*INS_ATOMS,INS_RUNS*INS_ATOMS);
151                         insert_atoms(md);
152                         /* change state after last insertion */
153                         if(hp->insert_count==INS_RUNS)
154                                 hp->state=STATE_POSTRUN;
155                         break;
156                 case STATE_POSTRUN:
157                         /* assigne values */
158                         steps=POST_RELAX;
159                         tau=POST_TAU;
160                         /* check temperature */
161                         dt=md->t_avg-md->t_ref;
162                         if(dt<0)
163                                 dt=-dt;
164                         if(dt>INS_DELTA_TC)
165                                 break;
166                         /* decrease temperature */
167                         hp->postrun_count+=1;
168                         printf(" ### postrun (%d/%d) ###\n",
169                                hp->postrun_count,POST_RUNS);
170                         set_temperature(md,md->t_ref-POST_DT);
171                         if(hp->postrun_count==POST_RUNS)
172                                 return 0;
173                         break;
174                 default:
175                         printf("[hook] FATAL (default case!?!)\n");
176                         break;
177         }
178
179         /* reset the average counters */
180         average_reset(md);
181
182         /* add schedule */
183         moldyn_add_schedule(md,steps,tau);
184
185         return 0;
186 }
187
188 int main(int argc,char **argv) {
189
190         /* main moldyn structure */
191         t_moldyn md;
192
193         /* hook parameter structure */
194         t_hp hookparam;
195
196         /* potential parameters */
197         t_tersoff_mult_params tp;
198         t_albe_mult_params ap;
199
200         /* testing location & velocity vector */
201         t_3dvec r,v;
202         memset(&r,0,sizeof(t_3dvec));
203         memset(&v,0,sizeof(t_3dvec));
204
205         /* initialize moldyn */
206         moldyn_init(&md,argc,argv);
207
208         /* choose integration algorithm */
209         set_int_alg(&md,MOLDYN_INTEGRATE_VERLET);
210
211         /* choose potential */
212 #ifdef ALBE
213         set_potential3b_j1(&md,albe_mult_3bp_j1);
214         set_potential3b_k1(&md,albe_mult_3bp_k1);
215         set_potential3b_j2(&md,albe_mult_3bp_j2);
216         set_potential3b_k2(&md,albe_mult_3bp_k2);
217 #else
218         set_potential1b(&md,tersoff_mult_1bp);
219         set_potential3b_j1(&md,tersoff_mult_3bp_j1);
220         set_potential3b_k1(&md,tersoff_mult_3bp_k1);
221         set_potential3b_j2(&md,tersoff_mult_3bp_j2);
222         set_potential3b_k2(&md,tersoff_mult_3bp_k2);
223 #endif
224
225 #ifdef ALBE
226         set_potential_params(&md,&ap);
227 #else
228         set_potential_params(&md,&tp);
229 #endif
230
231         /* cutoff radius & bondlen */
232 #ifdef ALBE
233         set_cutoff(&md,ALBE_S_SI);
234         set_bondlen(&md,ALBE_S_SI,ALBE_S_C,ALBE_S_SIC);
235         //set_cutoff(&md,ALBE_S_C);
236 #else
237         set_cutoff(&md,TM_S_SI);
238         set_bondlen(&md,TM_S_SI,TM_S_C,-1.0);
239         //set_cutoff(&md,TM_S_C);
240 #endif
241
242         /*
243          * potential parameters
244          */
245
246         /*
247          * tersoff mult potential parameters for SiC
248          */
249         tp.S[0]=TM_S_SI;
250         tp.R[0]=TM_R_SI;
251         tp.A[0]=TM_A_SI;
252         tp.B[0]=TM_B_SI;
253         tp.lambda[0]=TM_LAMBDA_SI;
254         tp.mu[0]=TM_MU_SI;
255         tp.beta[0]=TM_BETA_SI;
256         tp.n[0]=TM_N_SI;
257         tp.c[0]=TM_C_SI;
258         tp.d[0]=TM_D_SI;
259         tp.h[0]=TM_H_SI;
260
261         tp.S[1]=TM_S_C;
262         tp.R[1]=TM_R_C;
263         tp.A[1]=TM_A_C;
264         tp.B[1]=TM_B_C;
265         tp.lambda[1]=TM_LAMBDA_C;
266         tp.mu[1]=TM_MU_C;
267         tp.beta[1]=TM_BETA_C;
268         tp.n[1]=TM_N_C;
269         tp.c[1]=TM_C_C;
270         tp.d[1]=TM_D_C;
271         tp.h[1]=TM_H_C;
272
273         tp.chi=TM_CHI_SIC;
274
275         tersoff_mult_complete_params(&tp);
276
277         /*
278          * albe mult potential parameters for SiC
279          */
280         ap.S[0]=ALBE_S_SI;
281         ap.R[0]=ALBE_R_SI;
282         ap.A[0]=ALBE_A_SI;
283         ap.B[0]=ALBE_B_SI;
284         ap.r0[0]=ALBE_R0_SI;
285         ap.lambda[0]=ALBE_LAMBDA_SI;
286         ap.mu[0]=ALBE_MU_SI;
287         ap.gamma[0]=ALBE_GAMMA_SI;
288         ap.c[0]=ALBE_C_SI;
289         ap.d[0]=ALBE_D_SI;
290         ap.h[0]=ALBE_H_SI;
291
292         ap.S[1]=ALBE_S_C;
293         ap.R[1]=ALBE_R_C;
294         ap.A[1]=ALBE_A_C;
295         ap.B[1]=ALBE_B_C;
296         ap.r0[1]=ALBE_R0_C;
297         ap.lambda[1]=ALBE_LAMBDA_C;
298         ap.mu[1]=ALBE_MU_C;
299         ap.gamma[1]=ALBE_GAMMA_C;
300         ap.c[1]=ALBE_C_C;
301         ap.d[1]=ALBE_D_C;
302         ap.h[1]=ALBE_H_C;
303
304         ap.Smixed=ALBE_S_SIC;
305         ap.Rmixed=ALBE_R_SIC;
306         ap.Amixed=ALBE_A_SIC;
307         ap.Bmixed=ALBE_B_SIC;
308         ap.r0_mixed=ALBE_R0_SIC;
309         ap.lambda_m=ALBE_LAMBDA_SIC;
310         ap.mu_m=ALBE_MU_SIC;
311         ap.gamma_m=ALBE_GAMMA_SIC;
312         ap.c_mixed=ALBE_C_SIC;
313         ap.d_mixed=ALBE_D_SIC;
314         ap.h_mixed=ALBE_H_SIC;
315
316         albe_mult_complete_params(&ap);
317
318         /* set (initial) dimensions of simulation volume */
319 #ifdef ALBE
320         set_dim(&md,LCNTX*ALBE_LC_SI,LCNTY*ALBE_LC_SI,LCNTZ*ALBE_LC_SI,TRUE);
321         //set_dim(&md,LCNTX*ALBE_LC_C,LCNTY*ALBE_LC_C,LCNTZ*ALBE_LC_C,TRUE);
322         //set_dim(&md,LCNTX*ALBE_LC_SIC,LCNTY*ALBE_LC_SIC,LCNTZ*ALBE_LC_SIC,TRUE);
323 #else
324         set_dim(&md,LCNTX*LC_SI,LCNTY*LC_SI,LCNTZ*LC_SI,TRUE);
325         //set_dim(&md,LCNTX*LC_C,LCNTY*LC_C,LCNTZ*LC_C,TRUE);
326         //set_dim(&md,LCNTX*TM_LC_SIC,LCNTY*TM_LC_SIC,LCNTZ*TM_LC_SIC,TRUE);
327 #endif
328
329         /* set periodic boundary conditions in all directions */
330         set_pbc(&md,TRUE,TRUE,TRUE);
331
332         /* create the lattice / place atoms */
333         //
334 #ifdef ALBE
335         create_lattice(&md,DIAMOND,ALBE_LC_SI,SI,M_SI,
336         //create_lattice(&md,DIAMOND,ALBE_LC_C,C,M_C,
337 #else
338         create_lattice(&md,DIAMOND,LC_SI,SI,M_SI,
339 #endif
340                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
341         //               ATOM_ATTR_2BP|ATOM_ATTR_HB,
342                        0,LCNTX,LCNTY,LCNTZ,NULL);
343         //               1,LCNTX,LCNTY,LCNTZ,NULL);
344
345         /* create zinkblende structure */
346         /*
347 #ifdef ALBE
348         r.x=0.5*0.25*ALBE_LC_SIC; r.y=r.x; r.z=r.x;
349         create_lattice(&md,FCC,ALBE_LC_SIC,SI,M_SI,
350                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
351                        0,LCNTX,LCNTY,LCNTZ,&r);
352         r.x+=0.25*ALBE_LC_SIC; r.y=r.x; r.z=r.x;
353         create_lattice(&md,FCC,ALBE_LC_SIC,C,M_C,
354                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
355                        1,LCNTX,LCNTY,LCNTZ,&r);
356 #else
357         r.x=0.5*0.25*TM_LC_SIC; r.y=r.x; r.z=r.x;
358         create_lattice(&md,FCC,TM_LC_SIC,SI,M_SI,
359                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
360                        0,LCNTX,LCNTY,LCNTZ,&r);
361         r.x+=0.25*TM_LC_SIC; r.y=r.x; r.z=r.x;
362         create_lattice(&md,FCC,TM_LC_SIC,C,M_C,
363                        ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
364                        1,LCNTX,LCNTY,LCNTZ,&r);
365 #endif
366         */
367
368         /* check for right atom placing */
369         moldyn_bc_check(&md);
370
371         /* testing configuration */
372         //r.x=0.27*sqrt(3.0)*LC_SI/2.0; v.x=0;
373         //r.x=(TM_S_SI+TM_R_SI)/4.0;    v.x=0;
374         //r.y=0;                v.y=0;
375         //r.z=0;                v.z=0;
376         //add_atom(&md,SI,M_SI,0,
377         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
378         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
379         //           &r,&v);
380         //r.x=-r.x;     v.x=-v.x;
381         //r.y=0;                v.y=0;
382         //r.z=0;                v.z=0;
383         //add_atom(&md,SI,M_SI,0,
384         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
385         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
386         //           &r,&v);
387         //r.z=0.27*sqrt(3.0)*LC_SI/2.0; v.z=0;
388         //r.x=(TM_S_SI+TM_R_SI)/4.0;    v.x=0;
389         //r.y=0;                v.y=0;
390         //r.x=0;                v.x=0;
391         //add_atom(&md,SI,M_SI,0,
392         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
393         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
394         //           &r,&v);
395         //r.z=-r.z;     v.z=-v.z;
396         //r.y=0;                v.y=0;
397         //r.x=0;                v.x=0;
398         //add_atom(&md,SI,M_SI,0,
399         //           ATOM_ATTR_1BP|ATOM_ATTR_2BP|ATOM_ATTR_3BP|ATOM_ATTR_HB,
400         //           ATOM_ATTR_2BP|ATOM_ATTR_HB,
401         //           &r,&v);
402
403         /* set temperature & pressure */
404         set_temperature(&md,atof(argv[2])+273.0);
405         set_pressure(&md,BAR);
406
407         /* set amount of steps to skip before average calc */
408         set_avg_skip(&md,AVG_SKIP);
409
410         /* set p/t scaling */
411         //set_pt_scale(&md,0,0,T_SCALE_BERENDSEN,100.0);
412         //set_pt_scale(&md,P_SCALE_BERENDSEN,0.001,
413         //                 T_SCALE_BERENDSEN,100.0);
414         //set_pt_scale(&md,0,0,T_SCALE_DIRECT,1.0);
415         //set_pt_scale(&md,P_SCALE_BERENDSEN,0.001,0,0);
416         
417         /* initial thermal fluctuations of particles (in equilibrium) */
418         thermal_init(&md,TRUE);
419
420         /* create the simulation schedule */
421         moldyn_add_schedule(&md,PRERUN,PRE_TAU);
422
423         /* schedule hook function */
424         memset(&hookparam,0,sizeof(t_hp));
425         hookparam.argc=argc;
426         hookparam.argv=argv;
427         moldyn_set_schedule_hook(&md,&sic_hook,&hookparam);
428         //moldyn_set_schedule_hook(&md,&hook_del_atom,&hookparam);
429         //moldyn_add_schedule(&md,POSTRUN,1.0);
430
431         /* activate logging */
432         moldyn_set_log_dir(&md,argv[1]);
433         moldyn_set_report(&md,"Frank Zirkelbach",R_TITLE);
434         moldyn_set_log(&md,LOG_TOTAL_ENERGY,LOG_E);
435         moldyn_set_log(&md,LOG_TEMPERATURE,LOG_T);
436         moldyn_set_log(&md,LOG_PRESSURE,LOG_P);
437         moldyn_set_log(&md,VISUAL_STEP,LOG_V);
438         moldyn_set_log(&md,SAVE_STEP,LOG_S);
439         moldyn_set_log(&md,CREATE_REPORT,0);
440
441         /*
442          * let's do the actual md algorithm now
443          *
444          * integration of newtons equations
445          */
446         moldyn_integrate(&md);
447 #ifdef dEBUG
448 return 0;
449 #endif
450
451         /*
452          * post processing the data
453          */
454
455         /* close */
456         moldyn_shutdown(&md);
457         
458         return 0;
459 }
460