more tersoff changes, still a mess!
[physik/posic.git] / moldyn.c
index 00a9ed9..f09c93a 100644 (file)
--- a/moldyn.c
+++ b/moldyn.c
@@ -41,8 +41,9 @@ int moldyn_init(t_moldyn *moldyn,int argc,char **argv) {
 
 int moldyn_shutdown(t_moldyn *moldyn) {
 
-       link_cell_shutdown(moldyn);
+       printf("[moldyn] shutdown\n");
        moldyn_log_shutdown(moldyn);
+       link_cell_shutdown(moldyn);
        rand_close(&(moldyn->random));
        free(moldyn->atom);
 
@@ -70,9 +71,18 @@ int set_cutoff(t_moldyn *moldyn,double cutoff) {
        return 0;
 }
 
-int set_temperature(t_moldyn *moldyn,double t) {
-       
-       moldyn->t=t;
+int set_temperature(t_moldyn *moldyn,double t_ref) {
+
+       moldyn->t_ref=t_ref;
+
+       return 0;
+}
+
+int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) {
+
+       moldyn->pt_scale=(ptype|ttype);
+       moldyn->t_tc=ttc;
+       moldyn->p_tc=ptc;
 
        return 0;
 }
@@ -92,6 +102,13 @@ int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) {
        return 0;
 }
 
+int set_nn_dist(t_moldyn *moldyn,double dist) {
+
+       moldyn->nnd=dist;
+
+       return 0;
+}
+
 int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) {
 
        if(x)
@@ -122,6 +139,14 @@ int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) {
        return 0;
 }
 
+int set_potential2b_post(t_moldyn *moldyn,pf_func2b_post func,void *params) {
+
+       moldyn->func2b_post=func;
+       moldyn->pot2b_params=params;
+
+       return 0;
+}
+
 int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) {
 
        moldyn->func3b=func;
@@ -156,7 +181,7 @@ int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) {
                        strncpy(moldyn->sfb,fb,63);
                        break;
                case VISUAL_STEP:
-                       moldyn->mwrite=timer;
+                       moldyn->vwrite=timer;
                        strncpy(moldyn->vfb,fb,63);
                        visual_init(&(moldyn->vis),fb);
                        break;
@@ -170,9 +195,10 @@ int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) {
 
 int moldyn_log_shutdown(t_moldyn *moldyn) {
 
+       printf("[moldyn] log shutdown\n");
        if(moldyn->efd) close(moldyn->efd);
        if(moldyn->mfd) close(moldyn->mfd);
-       if(moldyn->visual) visual_tini(moldyn->visual);
+       if(&(moldyn->vis)) visual_tini(&(moldyn->vis));
 
        return 0;
 }
@@ -183,17 +209,15 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass,
        int count;
        int ret;
        t_3dvec origin;
-       t_atom *atom;
 
        count=a*b*c;
-       atom=moldyn->atom;
 
        if(type==FCC) count*=4;
 
        if(type==DIAMOND) count*=8;
 
-       atom=malloc(count*sizeof(t_atom));
-       if(atom==NULL) {
+       moldyn->atom=malloc(count*sizeof(t_atom));
+       if(moldyn->atom==NULL) {
                perror("malloc (atoms)");
                return -1;
        }
@@ -202,10 +226,10 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass,
 
        switch(type) {
                case FCC:
-                       ret=fcc_init(a,b,c,lc,atom,&origin);
+                       ret=fcc_init(a,b,c,lc,moldyn->atom,&origin);
                        break;
                case DIAMOND:
-                       ret=diamond_init(a,b,c,lc,atom,&origin);
+                       ret=diamond_init(a,b,c,lc,moldyn->atom,&origin);
                        break;
                default:
                        printf("unknown lattice type (%02x)\n",type);
@@ -221,20 +245,23 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass,
        }
 
        moldyn->count=count;
+       printf("[moldyn] created lattice with %d atoms\n",count);
 
        while(count) {
-               atom[count-1].element=element;
-               atom[count-1].mass=mass;
-               atom[count-1].attr=attr;
-               atom[count-1].bnum=bnum;
                count-=1;
+               moldyn->atom[count].element=element;
+               moldyn->atom[count].mass=mass;
+               moldyn->atom[count].attr=attr;
+               moldyn->atom[count].bnum=bnum;
+               check_per_bound(moldyn,&(moldyn->atom[count].r));
        }
 
+
        return ret;
 }
 
 int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr,
-             t_3dvec r,t_3dvec v) {
+             t_3dvec *r,t_3dvec *v) {
 
        t_atom *atom;
        void *ptr;
@@ -248,13 +275,15 @@ int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr,
                perror("[moldyn] realloc (add atom)");
                return -1;
        }
-       
-       atom=ptr;
-       atom->r=r;
-       atom->v=v;
-       atom->element=element;
-       atom->bnum=bnum;
-       atom->attr=attr;
+       moldyn->atom=ptr;
+
+       atom=moldyn->atom;
+       atom[count-1].r=*r;
+       atom[count-1].v=*v;
+       atom[count-1].element=element;
+       atom[count-1].mass=mass;
+       atom[count-1].bnum=bnum;
+       atom[count-1].attr=attr;
 
        return 0;
 }
@@ -266,7 +295,7 @@ int destroy_atoms(t_moldyn *moldyn) {
        return 0;
 }
 
-int thermal_init(t_moldyn *moldyn) {
+int thermal_init(t_moldyn *moldyn,u8 equi_init) {
 
        /*
         * - gaussian distribution of velocities
@@ -286,7 +315,7 @@ int thermal_init(t_moldyn *moldyn) {
        /* gaussian distribution of velocities */
        v3_zero(&p_total);
        for(i=0;i<moldyn->count;i++) {
-               sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass);
+               sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass);
                /* x direction */
                v=sigma*rand_get_gauss(random);
                atom[i].v.x=v;
@@ -309,28 +338,59 @@ int thermal_init(t_moldyn *moldyn) {
        }
 
        /* velocity scaling */
-       scale_velocity(moldyn);
+       scale_velocity(moldyn,equi_init);
 
        return 0;
 }
 
-int scale_velocity(t_moldyn *moldyn) {
+int scale_velocity(t_moldyn *moldyn,u8 equi_init) {
 
        int i;
-       double e,c;
+       double e,scale;
        t_atom *atom;
+       int count;
 
        atom=moldyn->atom;
 
        /*
         * - velocity scaling (E = 3/2 N k T), E: kinetic energy
         */
+
+       /* get kinetic energy / temperature & count involved atoms */
        e=0.0;
+       count=0;
+       for(i=0;i<moldyn->count;i++) {
+               if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) {
+                       e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
+                       count+=1;
+               }
+       }
+       if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN);
+       else return 0;  /* no atoms involved in scaling! */
+       
+       /* (temporary) hack for e,t = 0 */
+       if(e==0.0) {
+       moldyn->t=0.0;
+               if(moldyn->t_ref!=0.0)
+                       thermal_init(moldyn,equi_init);
+               else
+                       return 0; /* no scaling needed */
+       }
+
+
+       /* get scaling factor */
+       scale=moldyn->t_ref/moldyn->t;
+       if(equi_init&TRUE)
+               scale*=2.0;
+       else
+               if(moldyn->pt_scale&T_SCALE_BERENDSEN)
+                       scale=1.0+moldyn->tau*(scale-1.0)/moldyn->t_tc;
+       scale=sqrt(scale);
+
+       /* velocity scaling */
        for(i=0;i<moldyn->count;i++)
-               e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
-       c=sqrt((2.0*e)/(3.0*moldyn->count*K_BOLTZMANN*moldyn->t));
-       for(i=0;i<moldyn->count;i++)
-               v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c));
+               if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB))
+                       v3_scale(&(atom[i].v),&(atom[i].v),scale);
 
        return 0;
 }
@@ -381,15 +441,19 @@ t_3dvec get_total_p(t_moldyn *moldyn) {
        return p_total;
 }
 
-double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) {
+double estimate_time_step(t_moldyn *moldyn,double nn_dist) {
 
        double tau;
 
-       tau=0.05*nn_dist/(sqrt(3.0*K_BOLTZMANN*t/moldyn->atom[0].mass));
-       tau*=1.0E-9;
-       if(tau<moldyn->tau)
-               printf("[moldyn] warning: time step  (%f > %.15f)\n",
-                      moldyn->tau,tau);
+       /* nn_dist is the nearest neighbour distance */
+
+       if(moldyn->t==5.0) {
+               printf("[moldyn] i do not estimate timesteps below %f K!\n",
+                      MOLDYN_CRITICAL_EST_TEMP);
+               return 23.42;
+       }
+
+       tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t);
 
        return tau;     
 }
@@ -404,6 +468,9 @@ int link_cell_init(t_moldyn *moldyn) {
 
        t_linkcell *lc;
        int i;
+       int fd;
+
+       fd=open("/dev/null",O_WRONLY);
 
        lc=&(moldyn->lc);
 
@@ -418,10 +485,11 @@ int link_cell_init(t_moldyn *moldyn) {
        lc->cells=lc->nx*lc->ny*lc->nz;
        lc->subcell=malloc(lc->cells*sizeof(t_list));
 
-       printf("initializing linked cells (%d)\n",lc->cells);
+       printf("[moldyn] initializing linked cells (%d)\n",lc->cells);
 
        for(i=0;i<lc->cells;i++)
-               list_init(&(lc->subcell[i]),1);
+               //list_init(&(lc->subcell[i]),1);
+               list_init(&(lc->subcell[i]),fd);
 
        link_cell_update(moldyn);
        
@@ -474,7 +542,6 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) {
        count2=27;
        a=nx*ny;
 
-
        cell[0]=lc->subcell[i+j*nx+k*a];
        for(ci=-1;ci<=1;ci++) {
                bx=0;
@@ -508,10 +575,9 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) {
                }
        }
 
-       lc->dnlc=count2;
-       lc->countn=27;
+       lc->dnlc=count1;
 
-       return count2;
+       return count1;
 }
 
 int link_cell_shutdown(t_moldyn *moldyn) {
@@ -541,6 +607,7 @@ int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) {
                perror("[moldyn] realloc (runs)");
                return -1;
        }
+       moldyn->schedule.runs=ptr;
        moldyn->schedule.runs[count-1]=runs;
 
        ptr=realloc(schedule->tau,count*sizeof(double));
@@ -548,6 +615,7 @@ int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) {
                perror("[moldyn] realloc (tau)");
                return -1;
        }
+       moldyn->schedule.tau=ptr;
        moldyn->schedule.tau[count-1]=tau;
 
        return 0;
@@ -575,11 +643,13 @@ int moldyn_integrate(t_moldyn *moldyn) {
        unsigned int e,m,s,v;
        t_3dvec p;
        t_moldyn_schedule *schedule;
-
+       t_atom *atom;
        int fd;
        char fb[128];
+       double ds;
 
        schedule=&(moldyn->schedule);
+       atom=moldyn->atom;
 
        /* initialize linked cell method */
        link_cell_init(moldyn);
@@ -590,11 +660,6 @@ int moldyn_integrate(t_moldyn *moldyn) {
        s=moldyn->swrite;
        v=moldyn->vwrite;
 
-       if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) {
-               printf("[moldyn] warning, lv system not initialized\n");
-               return -1;
-       }
-
        /* sqaure of some variables */
        moldyn->tau_square=moldyn->tau*moldyn->tau;
        moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff;
@@ -602,9 +667,24 @@ int moldyn_integrate(t_moldyn *moldyn) {
        /* calculate initial forces */
        potential_force_calc(moldyn);
 
+       /* some stupid checks before we actually start calculating bullshit */
+       if(moldyn->cutoff>0.5*moldyn->dim.x)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.x\n");
+       if(moldyn->cutoff>0.5*moldyn->dim.y)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.y\n");
+       if(moldyn->cutoff>0.5*moldyn->dim.z)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.z\n");
+       ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass;
+       if(ds>0.05*moldyn->nnd)
+               printf("[moldyn] warning: forces too high / tau too small!\n");
+
        /* zero absolute time */
        moldyn->time=0.0;
 
+       /* debugging, ignre */
+       moldyn->debug=0;
+
+       /* executing the schedule */
        for(sched=0;sched<moldyn->schedule.content_count;sched++) {
 
                /* setting amount of runs and finite time step size */
@@ -617,8 +697,13 @@ int moldyn_integrate(t_moldyn *moldyn) {
        for(i=0;i<moldyn->time_steps;i++) {
 
                /* integration step */
+printf("MOVE\n");
                moldyn->integrate(moldyn);
 
+               /* p/t scaling */
+               if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT))
+                       scale_velocity(moldyn,FALSE);
+
                /* increase absolute time */
                moldyn->time+=moldyn->tau;
 
@@ -655,18 +740,25 @@ int moldyn_integrate(t_moldyn *moldyn) {
                }
                if(v) {
                        if(!(i%v)) {
-                               visual_atoms(moldyn->visual,i*moldyn->tau,
+                               visual_atoms(&(moldyn->vis),moldyn->time,
                                             moldyn->atom,moldyn->count);
-                               printf("\rsteps: %d",i);
+                               printf("\rsched: %d, steps: %d, theta: %d",
+                                      sched,i,moldyn->debug);
                                fflush(stdout);
                        }
                }
+
        }
 
                /* check for hooks */
                if(schedule->hook)
                        schedule->hook(moldyn,schedule->hook_params);
 
+               /* get a new info line */
+               printf("\n");
+
+       }
+
        return 0;
 }
 
@@ -690,7 +782,7 @@ int velocity_verlet(t_moldyn *moldyn) {
                v3_add(&(atom[i].r),&(atom[i].r),&delta);
                v3_scale(&delta,&(atom[i].f),0.5*tau_square/atom[i].mass);
                v3_add(&(atom[i].r),&(atom[i].r),&delta);
-               v3_per_bound(&(atom[i].r),&(moldyn->dim));
+               check_per_bound(moldyn,&(atom[i].r));
 
                /* velocities */
                v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass);
@@ -698,15 +790,10 @@ int velocity_verlet(t_moldyn *moldyn) {
        }
 
        /* neighbour list update */
-printf("list update ...\n");
        link_cell_update(moldyn);
-printf("done\n");
 
        /* forces depending on chosen potential */
-printf("calc potential/force ...\n");
        potential_force_calc(moldyn);
-       //moldyn->potential_force_function(moldyn);
-printf("done\n");
 
        for(i=0;i<count;i++) {
                /* again velocities */
@@ -729,109 +816,119 @@ printf("done\n");
 int potential_force_calc(t_moldyn *moldyn) {
 
        int i,j,k,count;
-       t_atom *atom,*btom,*ktom;
+       t_atom *itom,*jtom,*ktom;
        t_linkcell *lc;
-       t_list neighbour[27];
-       t_list *this,*thisk,*neighbourk;
-       u8 bc,bck;
-       int countn,dnlc;
+       t_list neighbour_i[27];
+       t_list neighbour_i2[27];
+       //t_list neighbour_j[27];
+       t_list *this,*that;
+       u8 bc_ij,bc_ik;
+       int dnlc;
 
        count=moldyn->count;
-       atom=moldyn->atom;
+       itom=moldyn->atom;
        lc=&(moldyn->lc);
 
        /* reset energy */
        moldyn->energy=0.0;
 
+       /* get energy and force of every atom */
        for(i=0;i<count;i++) {
-       
+
                /* reset force */
-               v3_zero(&(atom[i].f));
+               v3_zero(&(itom[i].f));
 
                /* single particle potential/force */
-               if(atom[i].attr&ATOM_ATTR_1BP)
-                       moldyn->func1b(moldyn,&(atom[i]));
+               if(itom[i].attr&ATOM_ATTR_1BP)
+                       moldyn->func1b(moldyn,&(itom[i]));
 
                /* 2 body pair potential/force */
-               if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) {
-               
+               if(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) {
+       
                        link_cell_neighbour_index(moldyn,
-                               (atom[i].r.x+moldyn->dim.x/2)/lc->x,
-                               (atom[i].r.y+moldyn->dim.y/2)/lc->y,
-                               (atom[i].r.z+moldyn->dim.z/2)/lc->z,
-                               neighbour);
+                               (itom[i].r.x+moldyn->dim.x/2)/lc->x,
+                               (itom[i].r.y+moldyn->dim.y/2)/lc->y,
+                               (itom[i].r.z+moldyn->dim.z/2)/lc->z,
+                               neighbour_i);
 
-                       countn=lc->countn;
                        dnlc=lc->dnlc;
 
-                       for(j=0;j<countn;j++) {
+                       for(j=0;j<27;j++) {
 
-                               this=&(neighbour[j]);
+                               this=&(neighbour_i[j]);
                                list_reset(this);
 
                                if(this->start==NULL)
                                        continue;
 
-                               bc=(j<dnlc)?0:1;
+                               bc_ij=(j<dnlc)?0:1;
 
                                do {
-                                       btom=this->current->data;
+                                       jtom=this->current->data;
 
-                                       if(btom==&(atom[i]))
+                                       if(jtom==&(itom[i]))
                                                continue;
 
-                                       if((btom->attr&ATOM_ATTR_2BP)&
-                                          (atom[i].attr&ATOM_ATTR_2BP))
+                                       if((jtom->attr&ATOM_ATTR_2BP)&
+                                          (itom[i].attr&ATOM_ATTR_2BP))
                                                moldyn->func2b(moldyn,
-                                                              &(atom[i]),
-                                                              btom,
-                                                              bc);
+                                                              &(itom[i]),
+                                                              jtom,
+                                                              bc_ij);
 
                                        /* 3 body potential/force */
 
-                                       if(!(atom[i].attr&ATOM_ATTR_3BP)||
-                                          !(btom->attr&ATOM_ATTR_3BP))
+                                       if(!(itom[i].attr&ATOM_ATTR_3BP)||
+                                          !(jtom->attr&ATOM_ATTR_3BP))
                                                continue;
 
-                                       link_cell_neighbour_index(moldyn,
-                                          (btom->r.x+moldyn->dim.x/2)/lc->x,
-                                          (btom->r.y+moldyn->dim.y/2)/lc->y,
-                                          (btom->r.z+moldyn->dim.z/2)/lc->z,
-                                          neighbourk);
+                                       /* copy the neighbour lists */
+                                       memcpy(neighbour_i2,neighbour_i,
+                                              27*sizeof(t_list));
 
-                                       for(k=0;k<lc->countn;k++) {
+                                       /* get neighbours of i */
+                                       for(k=0;k<27;k++) {
 
-                                               thisk=&(neighbourk[k]);
-                                               list_reset(thisk);
+                                               that=&(neighbour_i2[k]);
+                                               list_reset(that);
                                        
-                                               if(thisk->start==NULL)
+                                               if(that->start==NULL)
                                                        continue;
 
-                                               bck=(k<lc->dnlc)?0:1;
+                                               bc_ik=(k<dnlc)?0:1;
 
                                                do {
 
-                       ktom=thisk->current->data;
+                       ktom=that->current->data;
 
                        if(!(ktom->attr&ATOM_ATTR_3BP))
                                continue;
 
-                       if(ktom==btom)
+                       if(ktom==jtom)
                                continue;
 
-                       if(ktom==&(atom[i]))
+                       if(ktom==&(itom[i]))
                                continue;
 
-                       moldyn->func3b(moldyn,&(atom[i]),btom,ktom,bck);
+                       moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ik|bc_ij);
 
-                                               } while(list_next(thisk)!=\
+                                               } while(list_next(that)!=\
                                                        L_NO_NEXT_ELEMENT);
 
                                        }
                                        
                                } while(list_next(this)!=L_NO_NEXT_ELEMENT);
+               
+                               /* 2bp post function */
+                               if(moldyn->func2b_post) {
+                                       moldyn->func2b_post(moldyn,
+                                                           &(itom[i]),
+                                                           jtom,bc_ij);
+                               }
+
                        }
                }
+printf("debug atom %d: %.15f %.15f %.15f\n",i,itom[i].r.x,itom[i].v.x,itom[i].f.x);
        }
 
        return 0;
@@ -888,7 +985,6 @@ int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
 
        v3_sub(&distance,&(ai->r),&(aj->r));
        
-       v3_per_bound(&distance,&(moldyn->dim));
        if(bc) check_per_bound(moldyn,&distance);
        d=v3_norm(&distance);
        if(d<=moldyn->cutoff) {
@@ -932,7 +1028,7 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
                d=+h1-h2;
                d*=eps;
                v3_scale(&force,&distance,d);
-               v3_add(&(ai->f),&(aj->f),&force);
+               v3_add(&(ai->f),&(ai->f),&force);
        }
 
        return 0;
@@ -942,6 +1038,35 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
  * tersoff potential & force for 2 sorts of atoms
  */
 
+/* create mixed terms from parameters and set them */
+int tersoff_mult_complete_params(t_tersoff_mult_params *p) {
+
+       printf("[moldyn] tersoff parameter completion\n");
+       p->Smixed=sqrt(p->S[0]*p->S[1]);
+       p->Rmixed=sqrt(p->R[0]*p->R[1]);
+       p->Amixed=sqrt(p->A[0]*p->A[1]);
+       p->Bmixed=sqrt(p->B[0]*p->B[1]);
+       p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]);
+       p->mu_m=0.5*(p->mu[0]+p->mu[1]);
+
+       printf("[moldyn] tersoff mult parameter info:\n");
+       printf("  S (m)  | %.12f | %.12f | %.12f\n",p->S[0],p->S[1],p->Smixed);
+       printf("  R (m)  | %.12f | %.12f | %.12f\n",p->R[0],p->R[1],p->Rmixed);
+       printf("  A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV);
+       printf("  B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV);
+       printf("  lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1],
+                                         p->lambda_m);
+       printf("  mu     | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m);
+       printf("  beta   | %.10f | %.10f\n",p->beta[0],p->beta[1]);
+       printf("  n      | %f | %f\n",p->n[0],p->n[1]);
+       printf("  c      | %f | %f\n",p->c[0],p->c[1]);
+       printf("  d      | %f | %f\n",p->d[0],p->d[1]);
+       printf("  h      | %f | %f\n",p->h[0],p->h[1]);
+       printf("  chi    | %f \n",p->chi);
+
+       return 0;
+}
+
 /* tersoff 1 body part */
 int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) {
 
@@ -965,6 +1090,7 @@ int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) {
        exchange->h=&(params->h[num]);
 
        exchange->betan=pow(*(exchange->beta),*(exchange->n));
+       exchange->n_betan=*(exchange->n)*exchange->betan;
        exchange->c2=params->c[num]*params->c[num];
        exchange->d2=params->d[num]*params->d[num];
        exchange->c2d2=exchange->c2/exchange->d2;
@@ -992,6 +1118,7 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
        exchange=&(params->exchange);
 
        exchange->run3bp=0;
+       exchange->run2bp_post=0;
        
        /*
         * we need: f_c, df_c, f_r, df_r
@@ -1003,7 +1130,10 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
 
        if(bc) check_per_bound(moldyn,&dist_ij);
 
-       /* save for use in 3bp */ /* REALLY ?!?!?! */
+       d_ij=v3_norm(&dist_ij);
+
+       /* save for use in 3bp */
+       exchange->d_ij=d_ij;
        exchange->dist_ij=dist_ij;
 
        /* constants */
@@ -1011,10 +1141,8 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
                S=params->S[num];
                R=params->R[num];
                A=params->A[num];
+               B=params->B[num];
                lambda=params->lambda[num];
-               /* more constants depending of atoms i and j, needed in 3bp */
-               params->exchange.B=&(params->B[num]);
-               params->exchange.mu=&(params->mu[num]);
                mu=params->mu[num];
                params->exchange.chi=1.0;
        }
@@ -1022,26 +1150,18 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
                S=params->Smixed;
                R=params->Rmixed;
                A=params->Amixed;
+               B=params->Bmixed;
                lambda=params->lambda_m;
-               /* more constants depending of atoms i and j, needed in 3bp */
-               params->exchange.B=&(params->Bmixed);
-               params->exchange.mu=&(params->mu_m);
                mu=params->mu_m;
                params->exchange.chi=params->chi;
        }
-
-       d_ij=v3_norm(&dist_ij);
-
-       /* save for use in 3bp */
-       exchange->d_ij=d_ij;
-
        if(d_ij>S)
                return 0;
 
        f_r=A*exp(-lambda*d_ij);
        df_r=-lambda*f_r/d_ij;
 
-       /* f_a, df_a calc + save for 3bp use */
+       /* f_a, df_a calc + save for later use */
        exchange->f_a=-B*exp(-mu*d_ij);
        exchange->df_a=-mu*exchange->f_a/d_ij;
 
@@ -1062,15 +1182,85 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
 
        /* add forces */
        v3_add(&(ai->f),&(ai->f),&force);
-       /* energy is 0.5 f_r f_c, but we will sum it up twice ... */
-       moldyn->energy+=(0.25*f_r*f_c);
+       /* energy is 0.5 f_r f_c ... */
+       moldyn->energy+=(0.5*f_r*f_c);
 
        /* save for use in 3bp */
        exchange->f_c=f_c;
        exchange->df_c=df_c;
 
-       /* enable the run of 3bp function */
+       /* enable the run of 3bp function and 2bp post processing */
        exchange->run3bp=1;
+       exchange->run2bp_post=1;
+
+       /* reset 3bp sums */
+       exchange->zeta=0.0;
+       v3_zero(&(exchange->db_ij));
+
+       return 0;
+}
+
+/* tersoff 2 body post part */
+
+int tersoff_mult_post_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
+
+       /* here we have to allow for the 3bp sums */
+
+       t_tersoff_mult_params *params;
+       t_tersoff_exchange *exchange;
+
+       t_3dvec force,temp,*db_ij,*dist_ij;
+       double db_ij_scale1,db_ij_scale2;
+       double b_ij;
+       double f_c,df_c,f_a,df_a;
+       double chi,n,n_betan;
+       double zeta;
+
+       params=moldyn->pot2b_params;
+       exchange=&(params->exchange);
+
+       /* we do not run if f_c_ij was detected to be 0! */
+       if(!(exchange->run2bp_post))
+               return 0;
+
+       db_ij=&(exchange->db_ij);
+       f_c=exchange->f_c;
+       df_c=exchange->df_c;
+       f_a=exchange->f_a;
+       df_a=exchange->df_a;
+       n_betan=exchange->n_betan;
+       n=*(exchange->n);
+       chi=exchange->chi;
+       dist_ij=&(exchange->dist_ij);
+       zeta=exchange->zeta;
+
+       db_ij_scale2=pow(zeta,n-1.0);
+printf("DEBUG: %.15f %.15f\n",zeta,db_ij_scale2);
+       db_ij_scale1=db_ij_scale2*zeta;
+       db_ij_scale2*=n_betan;
+       db_ij_scale1=pow((1.0+n_betan*db_ij_scale1),-1.0/(2*n)-1);
+       b_ij=chi*db_ij_scale1*(1.0+n_betan*db_ij_scale1);
+       db_ij_scale1*=(-1.0*chi/(2*n));
+
+       /* db_ij part */
+       v3_scale(db_ij,db_ij,(db_ij_scale1*db_ij_scale2));
+       v3_scale(db_ij,db_ij,f_a);
+
+       /* df_a part */
+       v3_scale(&temp,dist_ij,b_ij*df_a);
+
+       /* db_ij + df_a part */
+       v3_add(&force,&temp,db_ij);
+       v3_scale(&force,&force,f_c);
+
+       /* df_c part */
+       v3_scale(&temp,dist_ij,f_a*b_ij*df_c);
+
+       /* add energy of 3bp sum */
+       moldyn->energy+=(0.5*f_c*b_ij*f_a);
+
+       /* add force of 3bp calculation (all three parts) */
+       v3_add(&(ai->f),&temp,&force);
 
        return 0;
 }
@@ -1081,22 +1271,19 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
 
        t_tersoff_mult_params *params;
        t_tersoff_exchange *exchange;
-       t_3dvec dist_ij,dist_ik,dist_jk;
+       t_3dvec dist_ij,dist_ik;
        t_3dvec temp,force;
        double R,S,s_r;
-       double d_ij,d_ij2,d_ik,d_jk;
-       double f_c,df_c,b_ij,f_a,df_a;
+       double d_ij,d_ik;
+       double rijrik,dijdik;
+       double f_c,df_c,f_a,df_a;
        double f_c_ik,df_c_ik,arg;
-       double scale;
-       double chi;
-       double n,c,d,h,beta,betan;
+       double n,c,d,h;
        double c2,d2,c2d2;
-       double numer,denom;
-       double theta,cos_theta,sin_theta;
-       double d_theta,d_theta1,d_theta2;
-       double h_cos,h_cos2,d2_h_cos2;
-       double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n;
-       double bracket3,bracket3_pow_1,bracket3_pow;
+       double cos_theta,d_costheta1,d_costheta2;
+       double h_cos,d2_h_cos2;
+       double frac;
+       double g;
        int num;
 
        params=moldyn->pot3b_params;
@@ -1113,10 +1300,13 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
         */
 
        d_ij=exchange->d_ij;
-       d_ij2=exchange->d_ij2;
+       dist_ij=exchange->dist_ij;
 
        f_a=params->exchange.f_a;
        df_a=params->exchange.df_a;
+
+       f_c=exchange->f_c;
+       df_c=exchange->df_c;
        
        /* d_ij is <= S, as we didn't return so far! */
 
@@ -1125,17 +1315,15 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
         *
         * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta
         *
-        * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik,
-        *              w_ik,
+        * - for db_ij: d_costheta, cos_theta, f_c_ik, df_c_ik, w_ik
         *
         */
 
-       
        v3_sub(&dist_ik,&(ai->r),&(ak->r));
        if(bc) check_per_bound(moldyn,&dist_ik);
        d_ik=v3_norm(&dist_ik);
 
-       /* constants for f_c_ik calc */
+       /* constants */
        if(num==ak->bnum) {
                R=params->R[num];
                S=params->S[num];
@@ -1145,28 +1333,11 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
                S=params->Smixed;
        }
 
-       /* calc of f_c_ik */
+       /* there is no contribution if f_c_ik = 0 */
        if(d_ik>S)
                return 0;
 
-       if(d_ik<R) {
-               /* f_c_ik = 1, df_c_ik = 0 */
-               f_c_ik=1.0;
-               df_c_ik=0.0;
-       }
-       else {
-               s_r=S-R;
-               arg=M_PI*(d_ik-R)/s_r;
-               f_c_ik=0.5+0.5*cos(arg);
-               df_c_ik=-0.5*sin(arg)*(M_PI/(s_r*d_ik));
-       }
-       
-       v3_sub(&dist_jk,&(aj->r),&(ak->r));
-       if(bc) check_per_bound(moldyn,&dist_jk);
-       d_jk=v3_norm(&dist_jk);
-
-       beta=*(exchange->beta);
-       betan=exchange->betan;
+       /* get exchange data */
        n=*(exchange->n);
        c=*(exchange->c);
        d=*(exchange->d);
@@ -1175,62 +1346,70 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
        d2=exchange->d2;
        c2d2=exchange->c2d2;
 
-       numer=d_ij2+d_ik*d_ik-d_jk*d_jk;
-       denom=2*d_ij*d_ik;
-       cos_theta=numer/denom;
-       sin_theta=sqrt(1.0-(cos_theta*cos_theta));
-       theta=acos(cos_theta);
-       d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom);
-       d_theta1=2*denom-numer*2*d_ik/d_ij;
-       d_theta2=2*denom-numer*2*d_ij/d_ik;
-       d_theta1*=d_theta;
-       d_theta2*=d_theta;
+       /* cosine of theta by scalaproduct */
+       rijrik=v3_scalar_product(&dist_ij,&dist_ik);
+       dijdik=d_ij*d_ik;
+       cos_theta=rijrik/dijdik;
+
+       /* hack - cos theta machine accuracy problems! */
+       if(cos_theta>1.0||cos_theta<-1.0) {
+               printf("THETA CORRECTION\n");
+               moldyn->debug++;
+               if(fabs(cos_theta)>1.0+ACCEPTABLE_ERROR)
+                       printf("[moldyn] WARNING: cos theta failure!\n");
+               if(cos_theta<0) {
+                       cos_theta=-1.0;
+               }
+               else {
+                       cos_theta=1.0;
+               }
+       }
+
+       d_costheta1=dijdik-rijrik*d_ik/d_ij;
+       d_costheta2=dijdik-rijrik*d_ij/d_ik;
 
        h_cos=(h-cos_theta);
-       h_cos2=h_cos*h_cos;
-       d2_h_cos2=d2-h_cos2;
-
-       /* some usefull expressions */
-       frac1=c2/(d2-h_cos2);
-       bracket1=1+c2d2-frac1;
-       bracket2=f_c_ik*bracket1;
-       bracket2_n_1=pow(bracket2,n-1.0);
-       bracket2_n=bracket2_n_1*bracket2;
-       bracket3=1+betan*bracket2_n;
-       bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0);
-       bracket3_pow=bracket3_pow_1*bracket3;
-
-       /* now go on with calc of b_ij and derivation of b_ij */
-       b_ij=chi*bracket3_pow;
-
-       /* derivation of theta */
-       v3_scale(&force,&dist_ij,d_theta1);
-       v3_scale(&temp,&dist_ik,d_theta2);
+       d2_h_cos2=d2+(h_cos*h_cos);
+
+       frac=c2/(d2_h_cos2);
+       g=1.0+c2d2-frac;
+
+       /* d_costheta contrib to db_ij (needed in all remaining cases) */
+       v3_scale(&temp,&dist_ij,d_costheta1);
+       v3_scale(&force,&dist_ik,d_costheta2);
        v3_add(&force,&force,&temp);
+       v3_scale(&force,&force,-2.0*frac*h_cos/d2_h_cos2); /* f_c_ik missing */
 
-       /* part 1 of derivation of b_ij */
-       v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1);
+       if(d_ik<R) {
+               /* f_c_ik = 1, df_c_ik = 0 */   
+               /* => only d_costheta contrib to db_ij */
+               // => do nothing ...
 
-       /* part 2 of derivation of b_ij */
-       v3_scale(&temp,&dist_ik,df_c_ik*bracket1);
+               /* zeta, f_c_ik = 1 */
+               exchange->zeta+=g;
+       }
+       else {
+               s_r=S-R;
+               arg=M_PI*(d_ik-R)/s_r;
+               f_c_ik=0.5+0.5*cos(arg);
+               df_c_ik=-0.5*sin(arg)*(M_PI/(s_r*d_ik));
 
-       /* sum up and scale ... */
-       v3_add(&temp,&temp,&force);
-       scale=bracket2_n_1*n*betan*(1+betan*bracket3_pow_1)*chi*(1.0/(2.0*n));
-       v3_scale(&temp,&temp,scale);
+               /* scale d_costheta contrib with f_c_ik */
+               v3_scale(&force,&force,f_c_ik);
 
-       /* now construct an energy and a force out of that */
-       v3_scale(&temp,&temp,f_a);
-       v3_scale(&force,&dist_ij,df_a*b_ij);
-       v3_add(&temp,&temp,&force);
-       v3_scale(&temp,&temp,f_c);
-       v3_scale(&force,&dist_ij,df_c*b_ij*f_a);
-       v3_add(&force,&force,&temp);
+               /* df_c_ik contrib to db_ij */
+               v3_scale(&temp,&dist_ik,df_c_ik*g);
 
-       /* add forces */
-       v3_add(&(ai->f),&(ai->f),&force);
-       /* energy is 0.5 f_r f_c, but we will sum it up twice ... */
-       moldyn->energy+=(0.25*f_a*b_ij*f_c);
+               /* sum up both parts */
+               v3_add(&force,&force,&temp);
+               
+               /* zeta */
+               exchange->zeta+=f_c_ik*g;
+       }
+printf("%.30f\n",exchange->zeta);
+       
+       /* add to db_ij */
+       v3_add(&(exchange->db_ij),&(exchange->db_ij),&force);
                                
        return 0;
 }