ready for tersoff 3bp debugging
[physik/posic.git] / moldyn.c
index f2ac637..af0132d 100644 (file)
--- a/moldyn.c
+++ b/moldyn.c
 #include "init/init.h"
 #include "random/random.h"
 #include "visual/visual.h"
+#include "list/list.h"
 
-int moldyn_usage(char **argv) {
 
-       printf("\n%s usage:\n\n",argv[0]);
-       printf("--- general options ---\n");
-       printf("-E <steps> <file> (log total energy)\n");
-       printf("-M <steps> <file> (log total momentum)\n");
-       printf("-D <steps> <file> (dump total information)\n");
-       printf("-S <steps> <filebase> (single save file)\n");
-       printf("--- physics options ---\n");
-       printf("-T <temperature> [K] (%f)\n",MOLDYN_TEMP);
-       printf("-t <timestep tau> [s] (%f)\n",MOLDYN_TAU);
-       printf("-R <runs> (%d)\n",MOLDYN_RUNS);
-       printf("\n");
+int moldyn_init(t_moldyn *moldyn,int argc,char **argv) {
+
+       //int ret;
+
+       //ret=moldyn_parse_argv(moldyn,argc,argv);
+       //if(ret<0) return ret;
+
+       memset(moldyn,0,sizeof(t_moldyn));
+
+       rand_init(&(moldyn->random),NULL,1);
+       moldyn->random.status|=RAND_STAT_VERBOSE;
 
        return 0;
 }
 
-int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) {
+int moldyn_shutdown(t_moldyn *moldyn) {
 
-       int i;
+       printf("[moldyn] shutdown\n");
+       moldyn_log_shutdown(moldyn);
+       link_cell_shutdown(moldyn);
+       rand_close(&(moldyn->random));
+       free(moldyn->atom);
 
-       memset(moldyn,0,sizeof(t_moldyn));
+       return 0;
+}
 
-       /* default values */
-       moldyn->t=MOLDYN_TEMP;
-       moldyn->tau=MOLDYN_TAU;
-       moldyn->time_steps=MOLDYN_RUNS;
-
-       /* parse argv */
-       for(i=1;i<argc;i++) {
-               if(argv[i][0]=='-') {
-                       switch(argv[i][1]){
-                               case 'E':
-                                       moldyn->ewrite=atoi(argv[++i]);
-                                       strncpy(moldyn->efb,argv[++i],64);
-                                       break;
-                               case 'M':
-                                       moldyn->mwrite=atoi(argv[++i]);
-                                       strncpy(moldyn->mfb,argv[++i],64);
-                                       break;
-                               case 'D':
-                                       moldyn->dwrite=atoi(argv[++i]);
-                                       strncpy(moldyn->dfb,argv[++i],64);
-                                       break;
-                               case 'S':
-                                       moldyn->swrite=atoi(argv[++i]);
-                                       strncpy(moldyn->sfb,argv[++i],64);
-                                       break;
-                               case 'T':
-                                       break;
-                                       moldyn->t=atof(argv[++i]);
-                               case 't':
-                                       moldyn->tau=atof(argv[++i]);
-                                       break;
-                               case 'R':
-                                       moldyn->time_steps=atoi(argv[++i]);
-                                       break;
-                               default:
-                                       printf("unknown option %s\n",argv[i]);
-                                       moldyn_usage(argv);
-                                       return -1;
-                       }
-               } else {
-                       moldyn_usage(argv);
+int set_int_alg(t_moldyn *moldyn,u8 algo) {
+
+       switch(algo) {
+               case MOLDYN_INTEGRATE_VERLET:
+                       moldyn->integrate=velocity_verlet;
+                       break;
+               default:
+                       printf("unknown integration algorithm: %02x\n",algo);
                        return -1;
-               }
        }
 
        return 0;
 }
 
-int moldyn_log_init(t_moldyn *moldyn) {
+int set_cutoff(t_moldyn *moldyn,double cutoff) {
 
-       moldyn->lvstat=0;
+       moldyn->cutoff=cutoff;
 
-       if(moldyn->ewrite) {
-               moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC);
-               if(moldyn->efd<0) {
-                       perror("[moldyn] efd open");
-                       return moldyn->efd;
-               }
-               dprintf(moldyn->efd,"# moldyn total energy logfile\n");
-               moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_E;
-       }
+       return 0;
+}
 
-       if(moldyn->mwrite) {
-               moldyn->mfd=open(moldyn->mfb,O_WRONLY|O_CREAT|O_TRUNC);
-               if(moldyn->mfd<0) {
-                       perror("[moldyn] mfd open");
-                       return moldyn->mfd;
-               }
-               dprintf(moldyn->mfd,"# moldyn total momentum logfile\n");
-               moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_M;
+int set_temperature(t_moldyn *moldyn,double t_ref) {
+
+       moldyn->t_ref=t_ref;
+
+       return 0;
+}
+
+int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) {
+
+       moldyn->pt_scale=(ptype|ttype);
+       moldyn->t_tc=ttc;
+       moldyn->p_tc=ptc;
+
+       return 0;
+}
+
+int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) {
+
+       moldyn->dim.x=x;
+       moldyn->dim.y=y;
+       moldyn->dim.z=z;
+
+       if(visualize) {
+               moldyn->vis.dim.x=x;
+               moldyn->vis.dim.y=y;
+               moldyn->vis.dim.z=z;
        }
 
-       if(moldyn->swrite)
-               moldyn->lvstat|=MOLDYN_LVSTAT_SAVE;
+       return 0;
+}
 
-       if(moldyn->dwrite) {
-               moldyn->dfd=open(moldyn->dfb,O_WRONLY|O_CREAT|O_TRUNC);
-                if(moldyn->dfd<0) {
-                       perror("[moldyn] dfd open");
-                       return moldyn->dfd;
-               }
-               write(moldyn->dfd,moldyn,sizeof(t_moldyn));
-               moldyn->lvstat|=MOLDYN_LVSTAT_DUMP;
+int set_nn_dist(t_moldyn *moldyn,double dist) {
+
+       moldyn->nnd=dist;
+
+       return 0;
+}
+
+int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) {
+
+       if(x)
+               moldyn->status|=MOLDYN_STAT_PBX;
+
+       if(y)
+               moldyn->status|=MOLDYN_STAT_PBY;
+
+       if(z)
+               moldyn->status|=MOLDYN_STAT_PBZ;
+
+       return 0;
+}
+
+int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) {
+
+       moldyn->func1b=func;
+       moldyn->pot1b_params=params;
+
+       return 0;
+}
+
+int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) {
+
+       moldyn->func2b=func;
+       moldyn->pot2b_params=params;
+
+       return 0;
+}
+
+int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) {
+
+       moldyn->func3b=func;
+       moldyn->pot3b_params=params;
+
+       return 0;
+}
+
+int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) {
+
+       switch(type) {
+               case LOG_TOTAL_ENERGY:
+                       moldyn->ewrite=timer;
+                       moldyn->efd=open(fb,O_WRONLY|O_CREAT|O_TRUNC);
+                       if(moldyn->efd<0) {
+                               perror("[moldyn] efd open");
+                               return moldyn->efd;
+                       }
+                       dprintf(moldyn->efd,"# total energy log file\n");
+                       break;
+               case LOG_TOTAL_MOMENTUM:
+                       moldyn->mwrite=timer;
+                       moldyn->mfd=open(fb,O_WRONLY|O_CREAT|O_TRUNC);
+                       if(moldyn->mfd<0) {
+                               perror("[moldyn] mfd open");
+                               return moldyn->mfd;
+                       }
+                       dprintf(moldyn->efd,"# total momentum log file\n");
+                       break;
+               case SAVE_STEP:
+                       moldyn->swrite=timer;
+                       strncpy(moldyn->sfb,fb,63);
+                       break;
+               case VISUAL_STEP:
+                       moldyn->vwrite=timer;
+                       strncpy(moldyn->vfb,fb,63);
+                       visual_init(&(moldyn->vis),fb);
+                       break;
+               default:
+                       printf("unknown log mechanism: %02x\n",type);
+                       return -1;
        }
 
-       if(moldyn->dwrite)
-               moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL;
+       return 0;
+}
+
+int moldyn_log_shutdown(t_moldyn *moldyn) {
+
+       printf("[moldyn] log shutdown\n");
+       if(moldyn->efd) close(moldyn->efd);
+       if(moldyn->mfd) close(moldyn->mfd);
+       if(&(moldyn->vis)) visual_tini(&(moldyn->vis));
 
        return 0;
 }
 
-int create_lattice(unsigned char type,int element,double mass,double lc,
-                   int a,int b,int c,t_atom **atom) {
+int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass,
+                   u8 attr,u8 bnum,int a,int b,int c) {
 
        int count;
        int ret;
@@ -146,10 +205,11 @@ int create_lattice(unsigned char type,int element,double mass,double lc,
        count=a*b*c;
 
        if(type==FCC) count*=4;
+
        if(type==DIAMOND) count*=8;
 
-       *atom=malloc(count*sizeof(t_atom));
-       if(*atom==NULL) {
+       moldyn->atom=malloc(count*sizeof(t_atom));
+       if(moldyn->atom==NULL) {
                perror("malloc (atoms)");
                return -1;
        }
@@ -158,10 +218,10 @@ int create_lattice(unsigned char type,int element,double mass,double lc,
 
        switch(type) {
                case FCC:
-                       ret=fcc_init(a,b,c,lc,*atom,&origin);
+                       ret=fcc_init(a,b,c,lc,moldyn->atom,&origin);
                        break;
                case DIAMOND:
-                       ret=diamond_init(a,b,c,lc,*atom,&origin);
+                       ret=diamond_init(a,b,c,lc,moldyn->atom,&origin);
                        break;
                default:
                        printf("unknown lattice type (%02x)\n",type);
@@ -176,23 +236,58 @@ int create_lattice(unsigned char type,int element,double mass,double lc,
                return -1;
        }
 
+       moldyn->count=count;
+       printf("[moldyn] created lattice with %d atoms\n",count);
+
        while(count) {
-               (*atom)[count-1].element=element;
-               (*atom)[count-1].mass=mass;
                count-=1;
+               moldyn->atom[count].element=element;
+               moldyn->atom[count].mass=mass;
+               moldyn->atom[count].attr=attr;
+               moldyn->atom[count].bnum=bnum;
+               check_per_bound(moldyn,&(moldyn->atom[count].r));
        }
 
+
        return ret;
 }
 
-int destroy_lattice(t_atom *atom) {
+int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr,
+             t_3dvec *r,t_3dvec *v) {
 
-       if(atom) free(atom);
+       t_atom *atom;
+       void *ptr;
+       int count;
+       
+       atom=moldyn->atom;
+       count=++(moldyn->count);
+
+       ptr=realloc(atom,count*sizeof(t_atom));
+       if(!ptr) {
+               perror("[moldyn] realloc (add atom)");
+               return -1;
+       }
+       moldyn->atom=ptr;
+
+       atom=moldyn->atom;
+       atom[count-1].r=*r;
+       atom[count-1].v=*v;
+       atom[count-1].element=element;
+       atom[count-1].mass=mass;
+       atom[count-1].bnum=bnum;
+       atom[count-1].attr=attr;
+
+       return 0;
+}
+
+int destroy_atoms(t_moldyn *moldyn) {
+
+       if(moldyn->atom) free(moldyn->atom);
 
        return 0;
 }
 
-int thermal_init(t_moldyn *moldyn,t_random *random,int count) {
+int thermal_init(t_moldyn *moldyn,u8 equi_init) {
 
        /*
         * - gaussian distribution of velocities
@@ -204,13 +299,15 @@ int thermal_init(t_moldyn *moldyn,t_random *random,int count) {
        double v,sigma;
        t_3dvec p_total,delta;
        t_atom *atom;
+       t_random *random;
 
        atom=moldyn->atom;
+       random=&(moldyn->random);
 
        /* gaussian distribution of velocities */
        v3_zero(&p_total);
-       for(i=0;i<count;i++) {
-               sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass);
+       for(i=0;i<moldyn->count;i++) {
+               sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass);
                /* x direction */
                v=sigma*rand_get_gauss(random);
                atom[i].v.x=v;
@@ -226,75 +323,109 @@ int thermal_init(t_moldyn *moldyn,t_random *random,int count) {
        }
 
        /* zero total momentum */
-       v3_scale(&p_total,&p_total,1.0/count);
-       for(i=0;i<count;i++) {
+       v3_scale(&p_total,&p_total,1.0/moldyn->count);
+       for(i=0;i<moldyn->count;i++) {
                v3_scale(&delta,&p_total,1.0/atom[i].mass);
                v3_sub(&(atom[i].v),&(atom[i].v),&delta);
        }
 
        /* velocity scaling */
-       scale_velocity(moldyn,count);
+       scale_velocity(moldyn,equi_init);
 
        return 0;
 }
 
-int scale_velocity(t_moldyn *moldyn,int count) {
+int scale_velocity(t_moldyn *moldyn,u8 equi_init) {
 
        int i;
-       double e,c;
+       double e,scale;
        t_atom *atom;
+       int count;
 
        atom=moldyn->atom;
 
        /*
         * - velocity scaling (E = 3/2 N k T), E: kinetic energy
         */
+
+       /* get kinetic energy / temperature & count involved atoms */
        e=0.0;
-       for(i=0;i<count;i++)
-               e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
-       c=sqrt((2.0*e)/(3.0*count*K_BOLTZMANN*moldyn->t));
-       for(i=0;i<count;i++)
-               v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c));
+       count=0;
+       for(i=0;i<moldyn->count;i++) {
+               if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) {
+                       e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
+                       count+=1;
+               }
+       }
+       if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN);
+       else return 0;  /* no atoms involved in scaling! */
+       
+       /* (temporary) hack for e,t = 0 */
+       if(e==0.0) {
+       moldyn->t=0.0;
+               if(moldyn->t_ref!=0.0)
+                       thermal_init(moldyn,equi_init);
+               else
+                       return 0; /* no scaling needed */
+       }
+
+
+       /* get scaling factor */
+       scale=moldyn->t_ref/moldyn->t;
+       if(equi_init&TRUE)
+               scale*=2.0;
+       else
+               if(moldyn->pt_scale&T_SCALE_BERENDSEN)
+                       scale=1.0+moldyn->tau*(scale-1.0)/moldyn->t_tc;
+       scale=sqrt(scale);
+
+       /* velocity scaling */
+       for(i=0;i<moldyn->count;i++)
+               if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB))
+                       v3_scale(&(atom[i].v),&(atom[i].v),scale);
 
        return 0;
 }
 
-double get_e_kin(t_atom *atom,int count) {
+double get_e_kin(t_moldyn *moldyn) {
 
        int i;
-       double e;
+       t_atom *atom;
 
-       e=0.0;
+       atom=moldyn->atom;
+       moldyn->ekin=0.0;
 
-       for(i=0;i<count;i++) {
-               e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
-       }
+       for(i=0;i<moldyn->count;i++)
+               moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
 
-       return e;
+       return moldyn->ekin;
 }
 
 double get_e_pot(t_moldyn *moldyn) {
 
-       return(moldyn->potential(moldyn));
+       return moldyn->energy;
 }
 
-double get_total_energy(t_moldyn *moldyn) {
+double update_e_kin(t_moldyn *moldyn) {
 
-       double e;
+       return(get_e_kin(moldyn));
+}
 
-       e=get_e_kin(moldyn->atom,moldyn->count);
-       e+=get_e_pot(moldyn);
+double get_total_energy(t_moldyn *moldyn) {
 
-       return e;
+       return(moldyn->ekin+moldyn->energy);
 }
 
-t_3dvec get_total_p(t_atom *atom, int count) {
+t_3dvec get_total_p(t_moldyn *moldyn) {
 
        t_3dvec p,p_total;
        int i;
+       t_atom *atom;
+
+       atom=moldyn->atom;
 
        v3_zero(&p_total);
-       for(i=0;i<count;i++) {
+       for(i=0;i<moldyn->count;i++) {
                v3_scale(&p,&(atom[i].v),atom[i].mass);
                v3_add(&p_total,&p_total,&p);
        }
@@ -302,19 +433,194 @@ t_3dvec get_total_p(t_atom *atom, int count) {
        return p_total;
 }
 
-double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) {
+double estimate_time_step(t_moldyn *moldyn,double nn_dist) {
 
        double tau;
 
-       tau=0.05*nn_dist/(sqrt(3.0*K_BOLTZMANN*t/moldyn->atom[0].mass));
-       tau*=1.0E-9;
-       if(tau<moldyn->tau)
-               printf("[moldyn] warning: time step  (%f > %.15f)\n",
-                      moldyn->tau,tau);
+       /* nn_dist is the nearest neighbour distance */
+
+       if(moldyn->t==5.0) {
+               printf("[moldyn] i do not estimate timesteps below %f K!\n",
+                      MOLDYN_CRITICAL_EST_TEMP);
+               return 23.42;
+       }
+
+       tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t);
 
        return tau;     
 }
 
+/*
+ * numerical tricks
+ */
+
+/* linked list / cell method */
+
+int link_cell_init(t_moldyn *moldyn) {
+
+       t_linkcell *lc;
+       int i;
+       int fd;
+
+       fd=open("/dev/null",O_WRONLY);
+
+       lc=&(moldyn->lc);
+
+       /* partitioning the md cell */
+       lc->nx=moldyn->dim.x/moldyn->cutoff;
+       lc->x=moldyn->dim.x/lc->nx;
+       lc->ny=moldyn->dim.y/moldyn->cutoff;
+       lc->y=moldyn->dim.y/lc->ny;
+       lc->nz=moldyn->dim.z/moldyn->cutoff;
+       lc->z=moldyn->dim.z/lc->nz;
+
+       lc->cells=lc->nx*lc->ny*lc->nz;
+       lc->subcell=malloc(lc->cells*sizeof(t_list));
+
+       printf("[moldyn] initializing linked cells (%d)\n",lc->cells);
+
+       for(i=0;i<lc->cells;i++)
+               //list_init(&(lc->subcell[i]),1);
+               list_init(&(lc->subcell[i]),fd);
+
+       link_cell_update(moldyn);
+       
+       return 0;
+}
+
+int link_cell_update(t_moldyn *moldyn) {
+
+       int count,i,j,k;
+       int nx,ny,nz;
+       t_atom *atom;
+       t_linkcell *lc;
+
+       atom=moldyn->atom;
+       lc=&(moldyn->lc);
+
+       nx=lc->nx;
+       ny=lc->ny;
+       nz=lc->nz;
+
+       for(i=0;i<lc->cells;i++)
+               list_destroy(&(moldyn->lc.subcell[i]));
+       
+       for(count=0;count<moldyn->count;count++) {
+               i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x;
+               j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y;
+               k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z;
+               list_add_immediate_ptr(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]),
+                                      &(atom[count]));
+       }
+
+       return 0;
+}
+
+int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) {
+
+       t_linkcell *lc;
+       int a;
+       int count1,count2;
+       int ci,cj,ck;
+       int nx,ny,nz;
+       int x,y,z;
+       u8 bx,by,bz;
+
+       lc=&(moldyn->lc);
+       nx=lc->nx;
+       ny=lc->ny;
+       nz=lc->nz;
+       count1=1;
+       count2=27;
+       a=nx*ny;
+
+       cell[0]=lc->subcell[i+j*nx+k*a];
+       for(ci=-1;ci<=1;ci++) {
+               bx=0;
+               x=i+ci;
+               if((x<0)||(x>=nx)) {
+                       x=(x+nx)%nx;
+                       bx=1;
+               }
+               for(cj=-1;cj<=1;cj++) {
+                       by=0;
+                       y=j+cj;
+                       if((y<0)||(y>=ny)) {
+                               y=(y+ny)%ny;
+                               by=1;
+                       }
+                       for(ck=-1;ck<=1;ck++) {
+                               bz=0;
+                               z=k+ck;
+                               if((z<0)||(z>=nz)) {
+                                       z=(z+nz)%nz;
+                                       bz=1;
+                               }
+                               if(!(ci|cj|ck)) continue;
+                               if(bx|by|bz) {
+                                       cell[--count2]=lc->subcell[x+y*nx+z*a];
+                               }
+                               else {
+                                       cell[count1++]=lc->subcell[x+y*nx+z*a];
+                               }
+                       }
+               }
+       }
+
+       lc->dnlc=count1;
+       lc->countn=27;
+
+       return count2;
+}
+
+int link_cell_shutdown(t_moldyn *moldyn) {
+
+       int i;
+       t_linkcell *lc;
+
+       lc=&(moldyn->lc);
+
+       for(i=0;i<lc->nx*lc->ny*lc->nz;i++)
+               list_shutdown(&(moldyn->lc.subcell[i]));
+
+       return 0;
+}
+
+int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) {
+
+       int count;
+       void *ptr;
+       t_moldyn_schedule *schedule;
+
+       schedule=&(moldyn->schedule);
+       count=++(schedule->content_count);
+
+       ptr=realloc(moldyn->schedule.runs,count*sizeof(int));
+       if(!ptr) {
+               perror("[moldyn] realloc (runs)");
+               return -1;
+       }
+       moldyn->schedule.runs=ptr;
+       moldyn->schedule.runs[count-1]=runs;
+
+       ptr=realloc(schedule->tau,count*sizeof(double));
+       if(!ptr) {
+               perror("[moldyn] realloc (tau)");
+               return -1;
+       }
+       moldyn->schedule.tau=ptr;
+       moldyn->schedule.tau[count-1]=tau;
+
+       return 0;
+}
+
+int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) {
+
+       moldyn->schedule.hook=hook;
+       moldyn->schedule.hook_params=hook_params;
+       
+       return 0;
+}
 
 /*
  *
@@ -326,44 +632,81 @@ double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) {
 
 int moldyn_integrate(t_moldyn *moldyn) {
 
-       int i;
-       unsigned int e,m,s,d,v;
-       unsigned char lvstat;
+       int i,sched;
+       unsigned int e,m,s,v;
        t_3dvec p;
-
+       t_moldyn_schedule *schedule;
+       t_atom *atom;
        int fd;
        char fb[128];
+       double ds;
+
+       schedule=&(moldyn->schedule);
+       atom=moldyn->atom;
 
+       /* initialize linked cell method */
+       link_cell_init(moldyn);
+
+       /* logging & visualization */
        e=moldyn->ewrite;
        m=moldyn->mwrite;
        s=moldyn->swrite;
-       d=moldyn->dwrite;
        v=moldyn->vwrite;
 
-       if(!(lvstat&MOLDYN_LVSTAT_INITIALIZED)) {
-               printf("[moldyn] warning, lv system not initialized\n");
-               return -1;
-       }
-
+       /* sqaure of some variables */
+       moldyn->tau_square=moldyn->tau*moldyn->tau;
+       moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff;
        /* calculate initial forces */
-       moldyn->force(moldyn);
+       potential_force_calc(moldyn);
+
+       /* do some checks before we actually start calculating bullshit */
+       if(moldyn->cutoff>0.5*moldyn->dim.x)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.x\n");
+       if(moldyn->cutoff>0.5*moldyn->dim.y)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.y\n");
+       if(moldyn->cutoff>0.5*moldyn->dim.z)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.z\n");
+       ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass;
+       if(ds>0.05*moldyn->nnd)
+               printf("[moldyn] warning: forces too high / tau too small!\n");
+
+       /* zero absolute time */
+       moldyn->time=0.0;
+       for(sched=0;sched<moldyn->schedule.content_count;sched++) {
+
+               /* setting amount of runs and finite time step size */
+               moldyn->tau=schedule->tau[sched];
+               moldyn->tau_square=moldyn->tau*moldyn->tau;
+               moldyn->time_steps=schedule->runs[sched];
+
+       /* integration according to schedule */
 
        for(i=0;i<moldyn->time_steps;i++) {
+
                /* integration step */
                moldyn->integrate(moldyn);
 
-               /* check for log & visualiziation */
+               /* p/t scaling */
+               if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT))
+                       scale_velocity(moldyn,FALSE);
+
+               /* increase absolute time */
+               moldyn->time+=moldyn->tau;
+
+               /* check for log & visualization */
                if(e) {
                        if(!(i%e))
                                dprintf(moldyn->efd,
-                                       "%.15f %.45f\n",i*moldyn->tau,
+                                       "%.15f %.45f %.45f %.45f\n",
+                                       moldyn->time,update_e_kin(moldyn),
+                                       moldyn->energy,
                                        get_total_energy(moldyn));
                }
                if(m) {
                        if(!(i%m)) {
-                               p=get_total_p(moldyn->atom,moldyn->count);
+                               p=get_total_p(moldyn);
                                dprintf(moldyn->mfd,
-                                       "%.15f %.45f\n",i*moldyn->tau,
+                                       "%.15f %.45f\n",moldyn->time,
                                        v3_norm(&p));
                        }
                }
@@ -378,19 +721,24 @@ int moldyn_integrate(t_moldyn *moldyn) {
                                        write(fd,moldyn->atom,
                                              moldyn->count*sizeof(t_atom));
                                }
+                               close(fd);
                        }       
                }
-               if(d) {
-                       if(!(i%d))
-                               write(moldyn->dfd,moldyn->atom,
-                                     moldyn->count*sizeof(t_atom));
-
-               }
                if(v) {
-                       if(!(i%v))
-                               visual_atoms(moldyn->visual,i*moldyn->tau,
+                       if(!(i%v)) {
+                               visual_atoms(&(moldyn->vis),moldyn->time,
                                             moldyn->atom,moldyn->count);
+                               printf("\rsched: %d, steps: %d",sched,i);
+                               fflush(stdout);
+                       }
                }
+
+       }
+
+               /* check for hooks */
+               if(schedule->hook)
+                       schedule->hook(moldyn,schedule->hook_params);
+
        }
 
        return 0;
@@ -408,8 +756,7 @@ int velocity_verlet(t_moldyn *moldyn) {
        atom=moldyn->atom;
        count=moldyn->count;
        tau=moldyn->tau;
-
-       tau_square=tau*tau;
+       tau_square=moldyn->tau_square;
 
        for(i=0;i<count;i++) {
                /* new positions */
@@ -417,15 +764,19 @@ int velocity_verlet(t_moldyn *moldyn) {
                v3_add(&(atom[i].r),&(atom[i].r),&delta);
                v3_scale(&delta,&(atom[i].f),0.5*tau_square/atom[i].mass);
                v3_add(&(atom[i].r),&(atom[i].r),&delta);
-               v3_per_bound(&(atom[i].r),&(moldyn->dim));
+               check_per_bound(moldyn,&(atom[i].r));
 
                /* velocities */
                v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass);
                v3_add(&(atom[i].v),&(atom[i].v),&delta);
        }
 
+       /* neighbour list update */
+       link_cell_update(moldyn);
+
        /* forces depending on chosen potential */
-       moldyn->force(moldyn);
+       potential_force_calc(moldyn);
+       //moldyn->potential_force_function(moldyn);
 
        for(i=0;i<count;i++) {
                /* again velocities */
@@ -443,148 +794,575 @@ int velocity_verlet(t_moldyn *moldyn) {
  * 
  */
 
-/* harmonic oscillator potential and force */
+/* generic potential and force calculation */
 
-double potential_harmonic_oscillator(t_moldyn *moldyn) {
+int potential_force_calc(t_moldyn *moldyn) {
 
-       t_ho_params *params;
-       t_atom *atom;
-       int i,j;
-       int count;
-       t_3dvec distance;
-       double d,u;
-       double sc,equi_dist;
+       int i,j,k,count;
+       t_atom *itom,*jtom,*ktom;
+       t_linkcell *lc;
+       t_list neighbour_i[27];
+       t_list neighbour_i2[27];
+       //t_list neighbour_j[27];
+       t_list *this,*that;
+       u8 bc_ij,bc_ijk;
+       int countn,dnlc;
 
-       params=moldyn->pot_params;
-       atom=moldyn->atom;
-       sc=params->spring_constant;
-       equi_dist=params->equilibrium_distance;
        count=moldyn->count;
+       itom=moldyn->atom;
+       lc=&(moldyn->lc);
+
+       /* reset energy */
+       moldyn->energy=0.0;
 
-       u=0.0;
        for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[i].r),&(atom[j].r));
-                       d=v3_norm(&distance);
-                       u+=(0.5*sc*(d-equi_dist)*(d-equi_dist));
+
+               /* reset force */
+               v3_zero(&(itom[i].f));
+
+               /* single particle potential/force */
+               if(itom[i].attr&ATOM_ATTR_1BP)
+                       moldyn->func1b(moldyn,&(itom[i]));
+
+               /* 2 body pair potential/force */
+               if(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) {
+       
+                       link_cell_neighbour_index(moldyn,
+                               (itom[i].r.x+moldyn->dim.x/2)/lc->x,
+                               (itom[i].r.y+moldyn->dim.y/2)/lc->y,
+                               (itom[i].r.z+moldyn->dim.z/2)/lc->z,
+                               neighbour_i);
+
+                       countn=lc->countn;
+                       dnlc=lc->dnlc;
+
+                       for(j=0;j<countn;j++) {
+
+                               this=&(neighbour_i[j]);
+                               list_reset(this);
+
+                               if(this->start==NULL)
+                                       continue;
+
+                               bc_ij=(j<dnlc)?0:1;
+
+                               do {
+                                       jtom=this->current->data;
+
+                                       if(jtom==&(itom[i]))
+                                               continue;
+
+                                       if((jtom->attr&ATOM_ATTR_2BP)&
+                                          (itom[i].attr&ATOM_ATTR_2BP))
+                                               moldyn->func2b(moldyn,
+                                                              &(itom[i]),
+                                                              jtom,
+                                                              bc_ij);
+
+                                       /* 3 body potential/force */
+
+                                       if(!(itom[i].attr&ATOM_ATTR_3BP)||
+                                          !(jtom->attr&ATOM_ATTR_3BP))
+                                               continue;
+
+                       /*
+                        * according to mr. nordlund, we dont need to take the 
+                        * sum over all atoms now, as 'this is centered' around
+                        * atom i ...
+                        * i am not quite sure though! there is a not vanishing
+                        * part even if f_c_ik is zero ...
+                        * this analytical potentials suck!
+                        * switching from mc to md to dft soon!
+                        */
+
+                       //              link_cell_neighbour_index(moldyn,
+                       //                 (jtom->r.x+moldyn->dim.x/2)/lc->x,
+                       //                 (jtom->r.y+moldyn->dim.y/2)/lc->y,
+                       //                 (jtom->r.z+moldyn->dim.z/2)/lc->z,
+                       //                 neighbour_j);
+
+//                                     /* neighbours of j */
+//                                     for(k=0;k<lc->countn;k++) {
+//
+//                                             that=&(neighbour_j[k]);
+//                                             list_reset(that);
+//                                     
+//                                             if(that->start==NULL)
+//                                                     continue;
+//
+//                                             bc_ijk=(k<lc->dnlc)?0:1;
+//
+//                                             do {
+//
+//                     ktom=that->current->data;
+//
+//                     if(!(ktom->attr&ATOM_ATTR_3BP))
+//                             continue;
+//
+//                     if(ktom==jtom)
+//                             continue;
+//
+//                     if(ktom==&(itom[i]))
+//                             continue;
+//
+//                     moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk);
+//
+/*                                             } while(list_next(that)!=\ */
+//                                                     L_NO_NEXT_ELEMENT);
+//
+//                                     }
+                       
+                                       /* copy the neighbour lists */
+                                       memcpy(neighbour_i2,neighbour_i,
+                                              27*sizeof(t_list));
+
+                                       /* get neighbours of i */
+                                       for(k=0;k<countn;k++) {
+
+                                               that=&(neighbour_i2[k]);
+                                               list_reset(that);
+                                       
+                                               if(that->start==NULL)
+                                                       continue;
+
+                                               bc_ijk=(k<dnlc)?0:1;
+
+                                               do {
+
+                       ktom=that->current->data;
+
+                       if(!(ktom->attr&ATOM_ATTR_3BP))
+                               continue;
+
+                       if(ktom==jtom)
+                               continue;
+
+                       if(ktom==&(itom[i]))
+                               continue;
+
+printf("Debug: atom %d before 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x);
+                       moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk);
+printf("Debug: atom %d after 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x);
+
+                                               } while(list_next(that)!=\
+                                                       L_NO_NEXT_ELEMENT);
+
+                                       }
+                                       
+                               } while(list_next(this)!=L_NO_NEXT_ELEMENT);
+                       }
                }
        }
 
-       return u;
+       return 0;
+}
+
+/*
+ * periodic boundayr checking
+ */
+
+int check_per_bound(t_moldyn *moldyn,t_3dvec *a) {
+       
+       double x,y,z;
+       t_3dvec *dim;
+
+       dim=&(moldyn->dim);
+
+       x=0.5*dim->x;
+       y=0.5*dim->y;
+       z=0.5*dim->z;
+
+       if(moldyn->status&MOLDYN_STAT_PBX) {
+               if(a->x>=x) a->x-=dim->x;
+               else if(-a->x>x) a->x+=dim->x;
+       }
+       if(moldyn->status&MOLDYN_STAT_PBY) {
+               if(a->y>=y) a->y-=dim->y;
+               else if(-a->y>y) a->y+=dim->y;
+       }
+       if(moldyn->status&MOLDYN_STAT_PBZ) {
+               if(a->z>=z) a->z-=dim->z;
+               else if(-a->z>z) a->z+=dim->z;
+       }
+
+       return 0;
 }
+        
+
+/*
+ * example potentials
+ */
+
+/* harmonic oscillator potential and force */
 
-int force_harmonic_oscillator(t_moldyn *moldyn) {
+int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
 
        t_ho_params *params;
-       int i,j,count;
-       t_atom *atom;
-       t_3dvec distance;
-       t_3dvec force;
+       t_3dvec force,distance;
        double d;
        double sc,equi_dist;
 
-       atom=moldyn->atom;      
-       count=moldyn->count;
-       params=moldyn->pot_params;
+       params=moldyn->pot2b_params;
        sc=params->spring_constant;
        equi_dist=params->equilibrium_distance;
 
-       for(i=0;i<count;i++) v3_zero(&(atom[i].f));
-
-       for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[i].r),&(atom[j].r));
-                       v3_per_bound(&distance,&(moldyn->dim));
-                       d=v3_norm(&distance);
-                       if(d<=moldyn->cutoff) {
-                               v3_scale(&force,&distance,
-                                        (-sc*(1.0-(equi_dist/d))));
-                               v3_add(&(atom[i].f),&(atom[i].f),&force);
-                               v3_sub(&(atom[j].f),&(atom[j].f),&force);
-                       }
-               }
+       v3_sub(&distance,&(ai->r),&(aj->r));
+       
+       if(bc) check_per_bound(moldyn,&distance);
+       d=v3_norm(&distance);
+       if(d<=moldyn->cutoff) {
+               /* energy is 1/2 (d-d0)^2, but we will add this twice ... */
+               moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist));
+               v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d)));
+               v3_add(&(ai->f),&(ai->f),&force);
        }
 
        return 0;
 }
 
-
 /* lennard jones potential & force for one sort of atoms */
  
-double potential_lennard_jones(t_moldyn *moldyn) {
+int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
 
        t_lj_params *params;
-       t_atom *atom;
-       int i,j;
-       int count;
-       t_3dvec distance;
-       double d,help;
-       double u;
+       t_3dvec force,distance;
+       double d,h1,h2;
        double eps,sig6,sig12;
 
-       params=moldyn->pot_params;
-       atom=moldyn->atom;
-       count=moldyn->count;
-       eps=params->epsilon;
+       params=moldyn->pot2b_params;
+       eps=params->epsilon4;
        sig6=params->sigma6;
        sig12=params->sigma12;
 
-       u=0.0;
-       for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[j].r),&(atom[i].r));
-                       d=1.0/v3_absolute_square(&distance);    /* 1/r^2 */
-                       help=d*d;                               /* 1/r^4 */
-                       help*=d;                                /* 1/r^6 */
-                       d=help*help;                            /* 1/r^12 */
-                       u+=eps*(sig12*d-sig6*help);
-               }
+       v3_sub(&distance,&(ai->r),&(aj->r));
+       if(bc) check_per_bound(moldyn,&distance);
+       d=v3_absolute_square(&distance);        /* 1/r^2 */
+       if(d<=moldyn->cutoff_square) {
+               d=1.0/d;                        /* 1/r^2 */
+               h2=d*d;                         /* 1/r^4 */
+               h2*=d;                          /* 1/r^6 */
+               h1=h2*h2;                       /* 1/r^12 */
+               /* energy is eps*..., but we will add this twice ... */
+               moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2);
+               h2*=d;                          /* 1/r^8 */
+               h1*=d;                          /* 1/r^14 */
+               h2*=6*sig6;
+               h1*=12*sig12;
+               d=+h1-h2;
+               d*=eps;
+               v3_scale(&force,&distance,d);
+               v3_add(&(ai->f),&(ai->f),&force);
        }
+
+       return 0;
+}
+
+/*
+ * tersoff potential & force for 2 sorts of atoms
+ */
+
+/* create mixed terms from parameters and set them */
+int tersoff_mult_complete_params(t_tersoff_mult_params *p) {
+
+       printf("[moldyn] tersoff parameter completion\n");
+       p->Smixed=sqrt(p->S[0]*p->S[1]);
+       p->Rmixed=sqrt(p->R[0]*p->R[1]);
+       p->Amixed=sqrt(p->A[0]*p->A[1]);
+       p->Bmixed=sqrt(p->B[0]*p->B[1]);
+       p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]);
+       p->mu_m=0.5*(p->mu[0]+p->mu[1]);
+
+       return 0;
+}
+
+/* tersoff 1 body part */
+int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) {
+
+       int num;
+       t_tersoff_mult_params *params;
+       t_tersoff_exchange *exchange;
        
-       return u;
+       num=ai->bnum;
+       params=moldyn->pot1b_params;
+       exchange=&(params->exchange);
+
+       /*
+        * simple: point constant parameters only depending on atom i to
+        *         their right values
+        */
+
+       exchange->beta=&(params->beta[num]);
+       exchange->n=&(params->n[num]);
+       exchange->c=&(params->c[num]);
+       exchange->d=&(params->d[num]);
+       exchange->h=&(params->h[num]);
+
+       exchange->betan=pow(*(exchange->beta),*(exchange->n));
+       exchange->c2=params->c[num]*params->c[num];
+       exchange->d2=params->d[num]*params->d[num];
+       exchange->c2d2=exchange->c2/exchange->d2;
+
+       return 0;
 }
+       
+/* tersoff 2 body part */
+int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) {
+
+       t_tersoff_mult_params *params;
+       t_tersoff_exchange *exchange;
+       t_3dvec dist_ij,force;
+       double d_ij;
+       double A,B,R,S,lambda,mu;
+       double f_r,df_r;
+       double f_c,df_c;
+       int num;
+       double s_r;
+       double arg;
+       double scale;
+
+       params=moldyn->pot2b_params;
+       num=ai->bnum;
+       exchange=&(params->exchange);
+
+       exchange->run3bp=0;
+       
+       /*
+        * we need: f_c, df_c, f_r, df_r
+        *
+        * therefore we need: R, S, A, lambda
+        */
 
-int force_lennard_jones(t_moldyn *moldyn) {
+       v3_sub(&dist_ij,&(ai->r),&(aj->r));
 
-       t_lj_params *params;
-       int i,j,count;
-       t_atom *atom;
-       t_3dvec distance;
-       t_3dvec force;
-       double d,h1,h2;
-       double eps,sig6,sig12;
+       if(bc) check_per_bound(moldyn,&dist_ij);
 
-       atom=moldyn->atom;      
-       count=moldyn->count;
-       params=moldyn->pot_params;
-       eps=params->epsilon;
-       sig6=params->sigma6;
-       sig12=params->sigma12;
+       d_ij=v3_norm(&dist_ij);
 
-       for(i=0;i<count;i++) v3_zero(&(atom[i].f));
+       /* save for use in 3bp */
+       exchange->dist_ij=dist_ij; /* <- needed ? */
+       exchange->d_ij=d_ij;
 
-       for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[j].r),&(atom[i].r));
-                       v3_per_bound(&distance,&(moldyn->dim));
-                       d=v3_absolute_square(&distance);
-                       if(d<=moldyn->cutoff_square) {
-                               h1=1.0/d;                       /* 1/r^2 */
-                               d=h1*h1;                        /* 1/r^4 */
-                               h2=d*d;                         /* 1/r^8 */
-                               h1*=d;                          /* 1/r^6 */
-                               h1*=h2;                         /* 1/r^14 */
-                               h1*=sig12;
-                               h2*=sig6;
-                               d=12.0*h1-6.0*h2;
-                               d*=eps;
-                               v3_scale(&force,&distance,d);
-                               v3_add(&(atom[j].f),&(atom[j].f),&force);
-                               v3_sub(&(atom[i].f),&(atom[i].f),&force);
-                       }
-               }
+       /* constants */
+       if(num==aj->bnum) {
+               S=params->S[num];
+               R=params->R[num];
+               A=params->A[num];
+               lambda=params->lambda[num];
+               /* more constants depending of atoms i and j, needed in 3bp */
+               params->exchange.B=&(params->B[num]);
+               params->exchange.mu=&(params->mu[num]);
+               mu=params->mu[num];
+               params->exchange.chi=1.0;
+       }
+       else {
+               S=params->Smixed;
+               R=params->Rmixed;
+               A=params->Amixed;
+               lambda=params->lambda_m;
+               /* more constants depending of atoms i and j, needed in 3bp */
+               params->exchange.B=&(params->Bmixed);
+               params->exchange.mu=&(params->mu_m);
+               mu=params->mu_m;
+               params->exchange.chi=params->chi;
+       }
+
+       if(d_ij>S)
+               return 0;
+
+       f_r=A*exp(-lambda*d_ij);
+       df_r=-lambda*f_r/d_ij;
+
+       /* f_a, df_a calc + save for 3bp use */
+       exchange->f_a=-B*exp(-mu*d_ij);
+       exchange->df_a=-mu*exchange->f_a/d_ij;
+
+       if(d_ij<R) {
+               /* f_c = 1, df_c = 0 */
+               f_c=1.0;
+               df_c=0.0;
+               v3_scale(&force,&dist_ij,df_r);
+       }
+       else {
+               s_r=S-R;
+               arg=M_PI*(d_ij-R)/s_r;
+               f_c=0.5+0.5*cos(arg);
+               df_c=-0.5*sin(arg)*(M_PI/(s_r*d_ij));
+               scale=df_c*f_r+df_r*f_c;
+               v3_scale(&force,&dist_ij,scale);
+       }
+
+       /* add forces */
+       v3_add(&(ai->f),&(ai->f),&force);
+       /* energy is 0.5 f_r f_c ... */
+       moldyn->energy+=(0.5*f_r*f_c);
+
+       /* save for use in 3bp */
+       exchange->f_c=f_c;
+       exchange->df_c=df_c;
+
+       /* enable the run of 3bp function */
+       exchange->run3bp=1;
+
+       return 0;
+}
+
+/* tersoff 3 body part */
+
+int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) {
+
+       t_tersoff_mult_params *params;
+       t_tersoff_exchange *exchange;
+       t_3dvec dist_ij,dist_ik,dist_jk;
+       t_3dvec temp,force;
+       double R,S,s_r;
+       double d_ij,d_ij2,d_ik,d_jk;
+       double f_c,df_c,b_ij,f_a,df_a;
+       double f_c_ik,df_c_ik,arg;
+       double scale;
+       double chi;
+       double n,c,d,h,beta,betan;
+       double c2,d2,c2d2;
+       double numer,denom;
+       double theta,cos_theta,sin_theta;
+       double d_theta,d_theta1,d_theta2;
+       double h_cos,h_cos2,d2_h_cos2;
+       double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n;
+       double bracket3,bracket3_pow_1,bracket3_pow;
+       int num;
+
+       params=moldyn->pot3b_params;
+       num=ai->bnum;
+       exchange=&(params->exchange);
+
+       if(!(exchange->run3bp))
+               return 0;
+
+       /*
+        * we need: f_c, d_fc, b_ij, db_ij, f_a, df_a
+        *
+        * we got f_c, df_c, f_a, df_a from 2bp calculation
+        */
+
+       d_ij=exchange->d_ij;
+       d_ij2=exchange->d_ij2;
+
+       f_a=params->exchange.f_a;
+       df_a=params->exchange.df_a;
+       
+       /* d_ij is <= S, as we didn't return so far! */
+
+       /*
+        * calc of b_ij (scalar) and db_ij (vector)
+        *
+        * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta
+        *
+        * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik,
+        *              w_ik,
+        *
+        */
+
+       
+       v3_sub(&dist_ik,&(ai->r),&(ak->r));
+       if(bc) check_per_bound(moldyn,&dist_ik);
+       d_ik=v3_norm(&dist_ik);
+
+       /* constants for f_c_ik calc */
+       if(num==ak->bnum) {
+               R=params->R[num];
+               S=params->S[num];
        }
+       else {
+               R=params->Rmixed;
+               S=params->Smixed;
+       }
+
+       /* calc of f_c_ik */
+       if(d_ik>S)
+               return 0;
 
+       if(d_ik<R) {
+               /* f_c_ik = 1, df_c_ik = 0 */
+               f_c_ik=1.0;
+               df_c_ik=0.0;
+       }
+       else {
+               s_r=S-R;
+               arg=M_PI*(d_ik-R)/s_r;
+               f_c_ik=0.5+0.5*cos(arg);
+               df_c_ik=-0.5*sin(arg)*(M_PI/(s_r*d_ik));
+       }
+       
+       v3_sub(&dist_jk,&(aj->r),&(ak->r));
+       if(bc) check_per_bound(moldyn,&dist_jk);
+       d_jk=v3_norm(&dist_jk);
+
+       beta=*(exchange->beta);
+       betan=exchange->betan;
+       n=*(exchange->n);
+       c=*(exchange->c);
+       d=*(exchange->d);
+       h=*(exchange->h);
+       c2=exchange->c2;
+       d2=exchange->d2;
+       c2d2=exchange->c2d2;
+
+       numer=d_ij2+d_ik*d_ik-d_jk*d_jk;
+       denom=2*d_ij*d_ik;
+       cos_theta=numer/denom;
+       sin_theta=sqrt(1.0-(cos_theta*cos_theta));
+       theta=acos(cos_theta);
+       d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom);
+       d_theta1=2*denom-numer*2*d_ik/d_ij;
+       d_theta2=2*denom-numer*2*d_ij/d_ik;
+       d_theta1*=d_theta;
+       d_theta2*=d_theta;
+
+       h_cos=(h-cos_theta);
+       h_cos2=h_cos*h_cos;
+       d2_h_cos2=d2-h_cos2;
+
+       /* some usefull expressions */
+       frac1=c2/(d2-h_cos2);
+       bracket1=1+c2d2-frac1;
+       bracket2=f_c_ik*bracket1;
+       bracket2_n_1=pow(bracket2,n-1.0);
+       bracket2_n=bracket2_n_1*bracket2;
+       bracket3=1+betan*bracket2_n;
+       bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0);
+       bracket3_pow=bracket3_pow_1*bracket3;
+
+       /* now go on with calc of b_ij and derivation of b_ij */
+       b_ij=chi*bracket3_pow;
+
+       /* derivation of theta */
+       v3_scale(&force,&dist_ij,d_theta1);
+       v3_scale(&temp,&dist_ik,d_theta2);
+       v3_add(&force,&force,&temp);
+
+       /* part 1 of derivation of b_ij */
+       v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1);
+
+       /* part 2 of derivation of b_ij */
+       v3_scale(&temp,&dist_ik,df_c_ik*bracket1);
+
+       /* sum up and scale ... */
+       v3_add(&temp,&temp,&force);
+       scale=bracket2_n_1*n*betan*(1+betan*bracket3_pow_1)*chi*(1.0/(2.0*n));
+       v3_scale(&temp,&temp,scale);
+
+       /* now construct an energy and a force out of that */
+       v3_scale(&temp,&temp,f_a);
+       v3_scale(&force,&dist_ij,df_a*b_ij);
+       v3_add(&temp,&temp,&force);
+       v3_scale(&temp,&temp,f_c);
+       v3_scale(&force,&dist_ij,df_c*b_ij*f_a);
+       v3_add(&force,&force,&temp);
+
+       /* add forces */
+       v3_add(&(ai->f),&(ai->f),&force);
+       /* energy is 0.5 f_r f_c, but we will sum it up twice ... */
+       moldyn->energy+=(0.25*f_a*b_ij*f_c);
+                               
        return 0;
 }