+ Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohelnstoffgehalt von ungef"ahr $10 at. \%$ im Implantationsmaximum hat.
+
+ F"ur die Herstellung noch gr"o"serer lamellarer Schichten ist eine m"oglichst breite, konstante und kastenf"ormige Verteilung des Kohlenstoffs ideal.
+ Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 keV$ reduziert \cite{unknown}.
+ Dadurch kann ein ann"ahernd plateauf"ormiger Verlauf der Kohlenstoffkonzentration erzeugt werden, der bei ungef"ahr $500 nm$ im wesentlichen dem Abfall des $180 keV$-Profils entspricht.
+
+ \printimg{h}{width=15cm}{multiple_impl_cp.eps}{Ideale plateauf"ormige Kohlenstoffverteilung mit Abfall entsprechend des $180 keV$ $C^+$-Implantationsprofils ab einer Tiefe von $500 nm$, erzeugt durch das Programm {\em nlsop\_create\_cbox} und experimentell realisiert durch mehrfaches Implantieren mit Ionenenergien von $10$ bis $180 keV$.}{img:cbox}
+ Ein solches Profil kann f"ur die Simulation mit dem Programm {\em nlsop\_create\_cbox} erzeugt werden.
+ W"ahlt man eine maximale Konzentration von $10 at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}.
+
+ \printimg{h}{width=15cm}{multiple_impl.eps}{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$-Implantationsschrittes. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:broad_l}
+ Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets, mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung, mit $2 MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen.