-\item Schematic explaining the selforganisation of amorphous $SiC_x$ precipitates and the evolution into ordered lamellae with increasing fluence (see text).
-\item Comparison of simulation results and XTEM images ($180 \, keV$ $C^+$ implantation into silicon at $150 \, ^{\circ} \mathrm{C}$) for several fluence. Amorphous cells are white. Simulation parameters: $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, $d_v=1 \times 10^6$.
-\item Amorphous cell distribution and corresponding carbon implantation profile. The implantation profile shows the mean amount of carbon in amorphous and crystalline volumes as well as the sum for a fluence of $4.3 \times 10^{17} \, cm^{-2}$.
-\item Simulation result for a $2 \, MeV$ $C^+$ irradiation into silicon doped with $10 \, at. \%$ carbon by multiple implantation steps between $180$ and $10 \, keV$. $100 \times 10^6$ simulation steps correspond to a fluence of $2.7 \times 10^{17} \, cm^{-2}$.
+\item Schematic explaining the selforganised evolution of amorphous $SiC_x$ precipitates into ordered $SiC_x$ lamellae with increasing fluence (see text).
+\item Comparison of simulation and XTEM ($180 \, keV$ $C^+$ implantation into silicon at $150 \, ^{\circ} \mathrm{C}$) for several fluences. Amorphous cells are white. Simulation parameters: $p_b=0.01$, $p_c=0.001 \times (3\, nm)^3$, $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$.
+\item Depth distribution of amorphous cells (white) (a) and corresponding carbon concentration profile for a fluence of $4.3 \times 10^{17} \, cm^{-2}$ (b) that shows separately the mean amount of carbon in amorphous and crystalline volumes as well as the sum of both.
+\item Prediction of the self-organised formation of amorphous nanolamellae upon $2 \, MeV$ $C^+$ irradiation of silicon homogeneously doped within the top $500 \, nm$ with $10 \, at. \%$ carbon. The fluence increases from (a) to (f) with $100 \times 10^6$ simulation steps corresponding to a fluence of $2.7 \times 10^{17} \, cm^{-2}$.