]> www.hackdaworld.org Git - lectures/latex.git/commitdiff
stable candidate
authorhackbard <hackbard>
Wed, 9 Aug 2006 14:53:46 +0000 (14:53 +0000)
committerhackbard <hackbard>
Wed, 9 Aug 2006 14:53:46 +0000 (14:53 +0000)
nlsop/paper/M243.tex

index 5bf26960e6b24f09c438a1652134ef8137aa42a4..c6b9158900176466d312e646ad8b3d08a3235798 100644 (file)
 
 \begin{abstract}
 Periodically arranged, self-organised, nanometric, amorphous precipitates have been observed after high-fluence ion implantations into solids for a number of ion/target combinations at certain implantation conditions.
 
 \begin{abstract}
 Periodically arranged, self-organised, nanometric, amorphous precipitates have been observed after high-fluence ion implantations into solids for a number of ion/target combinations at certain implantation conditions.
-A model describing the ordering process based on compressive stress exerted by the amorphous inclusions as a result of the density change upon amorphization is introduced.
+A model describing the ordering process based on compressive stress exerted by the amorphous inclusions as a result of the density change upon amorphisation is introduced.
 A Monte Carlo simulation code, which focuses on high-fluence carbon implantations into silicon, is able to reproduce experimentally observed nanolamella distributions as well as the formation of continuous amorphous layers.
 By means of simulation the selforganisation process gets traceable and detailed information about the compositional and structural state during the ordering process is obtained.
 Based on simulation results, a recipe is proposed for producing broad distributions of ordered lamellar structures.
 \end{abstract}
 
 \begin{keyword}
 A Monte Carlo simulation code, which focuses on high-fluence carbon implantations into silicon, is able to reproduce experimentally observed nanolamella distributions as well as the formation of continuous amorphous layers.
 By means of simulation the selforganisation process gets traceable and detailed information about the compositional and structural state during the ordering process is obtained.
 Based on simulation results, a recipe is proposed for producing broad distributions of ordered lamellar structures.
 \end{abstract}
 
 \begin{keyword}
-Monte Carlo simulation; Self-organisation; Precipitation; Amorphization;
+Monte Carlo simulation; Selforganisation; Precipitation; Amorphisation;
 Nanostructures; Ion irradiation\\
 \PACS 02.70.Uu; 61.72.Tt; 81.16.Rf
 \end{keyword}
 Nanostructures; Ion irradiation\\
 \PACS 02.70.Uu; 61.72.Tt; 81.16.Rf
 \end{keyword}
@@ -55,11 +55,11 @@ Nanostructures; Ion irradiation\\
 \section{Introduction}
 
 Precipitates resulting from high-fluence ion implantation into solids are usually statistically arranged and have a broad size distribution.
 \section{Introduction}
 
 Precipitates resulting from high-fluence ion implantation into solids are usually statistically arranged and have a broad size distribution.
-However, the formation of ordered, lamellar inclusions has been observed for a number of ion/target combinations at certain implantation conditions [1-3].
+However, the formation of ordered lamellar inclusions has been observed for a number of ion/target combinations at certain implantation conditions [1-3].
 An inevitable condition for the material to exhibit this special self-organised arrangement is a largely reduced density of host atoms in the amorphous phase compared to the crystalline host lattice.
 As a consequence stress is exerted by the amorphous inclusions which is responsible for the ordering process.
 A model describing the process is implemented in a simulation code, focussing on high-fluence carbon implantations into silicon.
 An inevitable condition for the material to exhibit this special self-organised arrangement is a largely reduced density of host atoms in the amorphous phase compared to the crystalline host lattice.
 As a consequence stress is exerted by the amorphous inclusions which is responsible for the ordering process.
 A model describing the process is implemented in a simulation code, focussing on high-fluence carbon implantations into silicon.
-Simulation results are compared to experimental data and a recipe for the fabrication of broad distributions of lamellar ordered structures is proposed.
+Simulation results are compared to experimental data and a recipe for the fabrication of broad distributions of ordered lamellar structures is proposed.
 
 \section{Model}
 High-fluence carbon implantations in silicon at temperatures between $150$ and $400 \, ^{\circ} \mathrm{C}$ with an energy of $180 \, keV$ result in an amorphous buried $SiC_x$ layer along with ordered spherical and lamellar amorphous $SiC_x$ inclusions at the upper layer interface [4] (Fig. 1).
 
 \section{Model}
 High-fluence carbon implantations in silicon at temperatures between $150$ and $400 \, ^{\circ} \mathrm{C}$ with an energy of $180 \, keV$ result in an amorphous buried $SiC_x$ layer along with ordered spherical and lamellar amorphous $SiC_x$ inclusions at the upper layer interface [4] (Fig. 1).
@@ -67,7 +67,7 @@ A model [5] explaining the evolution of ordered lamellae with increasing amount
 
 With increasing fluence the silicon gets supersaturated with carbon atoms which  results in the nucleation of spherical $SiC_x$ precipitates.
 By the precipitation into the amorphous $SiC_x$ (a-$SiC_x$) phase an enormous interfacial energy can be saved, which would be required for cubic $SiC$ ($3C-SiC$) in crystalline silicon (c-$Si$) [6], originating from a $20 \, \%$ lattice mismatch.
 
 With increasing fluence the silicon gets supersaturated with carbon atoms which  results in the nucleation of spherical $SiC_x$ precipitates.
 By the precipitation into the amorphous $SiC_x$ (a-$SiC_x$) phase an enormous interfacial energy can be saved, which would be required for cubic $SiC$ ($3C-SiC$) in crystalline silicon (c-$Si$) [6], originating from a $20 \, \%$ lattice mismatch.
-Since amorphous silicon (a-$Si$) is not stable against ion beam induced epitaxial recrystallization at temperatures above $130 \, ^{\circ} \mathrm{C}$ at the present low atomic displacement rates [7], the existence of the amorphous precipitates must be due to the accumulation of carbon (carbon induced amorphization), which stabilizes the amorphous phase [8].
+Since amorphous silicon (a-$Si$) is not stable against ion beam induced epitaxial recrystallisation at temperatures above $130 \, ^{\circ} \mathrm{C}$ at the present low atomic displacement rates [7], the existence of the amorphous precipitates must be due to the accumulation of carbon (carbon induced amorphisation), which stabilises the amorphous phase [8].
 In fact, energy filtered XTEM studies [9] reveal the carbon-rich nature of the precipitates.
 
 The $Si$ atomic density of a-$SiC$ is about $20$ to $30 \, \%$ lower than the one of $3C-SiC$ [10,11].
 In fact, energy filtered XTEM studies [9] reveal the carbon-rich nature of the precipitates.
 
 The $Si$ atomic density of a-$SiC$ is about $20$ to $30 \, \%$ lower than the one of $3C-SiC$ [10,11].
@@ -78,7 +78,7 @@ Upon continued ion irradiation volumes between amorphous inclusions will more li
 In contrast, randomly formed amorphous precipitates (ballistic amorphisation) with low concentrations of carbon in a crystalline neighbourhood are likely to recrystallise under present implantation conditions.
 
 Since the solid solubility of carbon in c-$Si$ is essentially zero, once formed, a-$SiC_x$ inclusions serve as diffusional sinks for excess carbon atoms in the c-$Si$ phase, as represented by the white arrows in Fig. 2.
 In contrast, randomly formed amorphous precipitates (ballistic amorphisation) with low concentrations of carbon in a crystalline neighbourhood are likely to recrystallise under present implantation conditions.
 
 Since the solid solubility of carbon in c-$Si$ is essentially zero, once formed, a-$SiC_x$ inclusions serve as diffusional sinks for excess carbon atoms in the c-$Si$ phase, as represented by the white arrows in Fig. 2.
-As a consequence the amorphous volumes accumulate carbon, which stabilizes them against recrystallisation and promotes the strain supported formation of additional a-$SiC_x$ in their lateral vicinity.
+As a consequence the amorphous volumes accumulate carbon, which stabilises them against recrystallisation and promotes the strain supported formation of additional a-$SiC_x$ in their lateral vicinity.
 
 \section{Simulation}
 
 
 \section{Simulation}
 
@@ -87,10 +87,10 @@ Each cell is either in a crystalline or amorphous state and stores the local car
 The simulation starts with a complete crystalline target and zero carbon concentration.
 
 The simulation algorithm consists of three parts.
 The simulation starts with a complete crystalline target and zero carbon concentration.
 
 The simulation algorithm consists of three parts.
-In a first amorphisation/recrystallisation step random numbers are computed to specify the volume at position $\vec{r}$ in which a collision occurs.
+In a first amorphisation/re-crystallisation step random numbers are computed to specify the volume at position $\vec{r}$ in which a collision occurs.
 Two uniformly distributed random numbers $x$ and $y$ are generated to determine the lateral position of $\vec{r}$.
 Using the rejection method a random number $z$ specifying the depth coordinate of $\vec{r}$ is distributed according to the nuclear stopping power profile which, as will be seen below, is identical to the number of collisions caused by the ions per depth.
 Two uniformly distributed random numbers $x$ and $y$ are generated to determine the lateral position of $\vec{r}$.
 Using the rejection method a random number $z$ specifying the depth coordinate of $\vec{r}$ is distributed according to the nuclear stopping power profile which, as will be seen below, is identical to the number of collisions caused by the ions per depth.
-The local amorphization or recrystallization probability is computed as detailed below and another random number between $0$ and $1$ decides whether there is amorphization or recrystallization or the state of that volume is unchanged.
+The local amorphisation or recrystallisation probability is computed as detailed below and another random number between $0$ and $1$ decides whether there is amorphisation or recrystallisation or the state of that volume is unchanged.
 This step is repeated for the mean number of steps of cells in which collisions are caused by one ion, gained from {\em TRIM} [12] collision data.
 In a second step, the ion gets incorporated in the target at randomly chosen coordinates with the depth coordinate being distributed according to the {\em TRIM} implantation profile.
 In a last step the carbon diffusion, controlled by two simulation parameters $d_v$ and $d_r$, as well as sputtering, controlled by the parameter $n$ are treated.
 This step is repeated for the mean number of steps of cells in which collisions are caused by one ion, gained from {\em TRIM} [12] collision data.
 In a second step, the ion gets incorporated in the target at randomly chosen coordinates with the depth coordinate being distributed according to the {\em TRIM} implantation profile.
 In a last step the carbon diffusion, controlled by two simulation parameters $d_v$ and $d_r$, as well as sputtering, controlled by the parameter $n$ are treated.
@@ -111,7 +111,7 @@ Thus, on average an ion is loosing a constant energy per collision.
 The carbon induced amorphisation is proportional to the local amount of carbon $c_C(\vec{r})$ and controlled by weight factor $p_c$.
 The stress enhanced amorphisation is weighted by $p_s$.
 The forces originating from the amorphous volumes $\vec{r'}$ in the vicinity of $\vec{r}$ are assumed to be proportional to the amount of carbon $c_C(\vec{r'})$ in the neighbour cell.
 The carbon induced amorphisation is proportional to the local amount of carbon $c_C(\vec{r})$ and controlled by weight factor $p_c$.
 The stress enhanced amorphisation is weighted by $p_s$.
 The forces originating from the amorphous volumes $\vec{r'}$ in the vicinity of $\vec{r}$ are assumed to be proportional to the amount of carbon $c_C(\vec{r'})$ in the neighbour cell.
-The sum is limited to volumes located in the same layer because of of stress relaxation towards the surface. Since the stress amplitude is decreasing with the square of the distance $r-r'$, a cutoff radius is used in the simulation.
+The sum is limited to volumes located in the same layer because of stress relaxation towards the surface. Since the stress amplitude is decreasing with the square of the distance $r-r'$, a cutoff radius is used in the simulation.
 If an amorphous volume is hit by collisions, a recrystallisation probability is given by
 \begin{equation}
 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
 If an amorphous volume is hit by collisions, a recrystallisation probability is given by
 \begin{equation}
 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
@@ -124,14 +124,14 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
 \end{array}
 \right.
 \]
 \end{array}
 \right.
 \]
-which is basically $1$ minus the amorphization probability and a term taking into account the crystalline neighbourhood which is needed for epitaxial recrystallization.
+which is basically $1$ minus the amorphisation probability and a term taking into account the crystalline neighbourhood which is needed for epitaxial recrystallisation.
 
 \section{Results}
 First versions of this simulation just covered the limited depth region of the target in which selforganisation is observed [13,14].
 As can be seen in Fig. 3, the new version of the simulation code is able to model the whole depth region affected by the irradiation process and properly describes the fluence dependence of the amorphous phase formation.
 
 \section{Results}
 First versions of this simulation just covered the limited depth region of the target in which selforganisation is observed [13,14].
 As can be seen in Fig. 3, the new version of the simulation code is able to model the whole depth region affected by the irradiation process and properly describes the fluence dependence of the amorphous phase formation.
-In Fig 3 a) only isolated amorphous cells exist in the simulation and cross-section transmission electron microscopy (XTEM) shows dark contrasts, corresponding to highly distorted regions caused by defects.
+In Fig 3a) only isolated amorphous cells exist in the simulation and cross-section transmission electron microscopy (XTEM) shows dark contrasts, corresponding to highly distorted regions caused by defects.
 XTEM at higher magnification [9] shows the existence of amorphous inclusions which are $3 \, nm$ in size.
 XTEM at higher magnification [9] shows the existence of amorphous inclusions which are $3 \, nm$ in size.
-For a fluence of $2.1 \times 10^{17} cm^{-2}$ a continuous amorphous layer is formed (Fig. 3b).
+For a fluence of $2.1 \times 10^{17} cm^{-2}$ a continuous amorphous layer is formed (Fig. 3b)).
 The simulation shows a broader continuous layer than observed experimentally.
 However dark contrasts below the continuous layer in the XTEM image of Fig. 3b) indicate a high concentration of defects and amorphous inclusions in this depth zone.
 The continuous amorphous layer together with the region showing the dark contrast has essentially the same thickness as the simulated continuous layer.
 The simulation shows a broader continuous layer than observed experimentally.
 However dark contrasts below the continuous layer in the XTEM image of Fig. 3b) indicate a high concentration of defects and amorphous inclusions in this depth zone.
 The continuous amorphous layer together with the region showing the dark contrast has essentially the same thickness as the simulated continuous layer.
@@ -162,7 +162,7 @@ Finally a technique is proposed to produce thick films of ordered lamellar nanos
 
 \begin{thebibliography}{20}
 \bibitem{ommen} A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.
 
 \begin{thebibliography}{20}
 \bibitem{ommen} A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.
-\bibitem{specht} E. D. Specht, D. A. Walko, S. J. Zinkle, Nucl. Instr. and Meth. B 84 (2000) 390.
+\bibitem{specht} E. D. Specht, D. A. Walko, S. J. Zinkle, Nucl. Instr. and Meth. B 84 (1994) 323.
 \bibitem{ishimaru} M. Ishimaru,  R. M. Dickerson, K. E. Sickafus, Nucl. Instr. and Meth. B 166-167 (2000) 390.
 \bibitem{lamellar_inclusions} J. K. N. Lindner, M. Häberlen, M. Schmidt, W. Attenberger, B. Stritzker, Nucl. Instr. Meth. B 186 (2002) 206.
 \bibitem{model_joerg} J. K. N. Lindner, Nucl. Instr. Meth. B 178 (2001) 44.
 \bibitem{ishimaru} M. Ishimaru,  R. M. Dickerson, K. E. Sickafus, Nucl. Instr. and Meth. B 166-167 (2000) 390.
 \bibitem{lamellar_inclusions} J. K. N. Lindner, M. Häberlen, M. Schmidt, W. Attenberger, B. Stritzker, Nucl. Instr. Meth. B 186 (2002) 206.
 \bibitem{model_joerg} J. K. N. Lindner, Nucl. Instr. Meth. B 178 (2001) 44.
@@ -185,10 +185,10 @@ Finally a technique is proposed to produce thick films of ordered lamellar nanos
 
 \begin{enumerate}
 \item Cross-sectional transmission electron microscopy (XTEM) image of a $Si(100)$ sample implanted with $180 \, keV$ $C^+$ ions at a fluence of $4.3 \times 10^{17} \, cm^{-2}$ and a substrate temperature of $150 \, ^{\circ} \mathrm{C}$. Lamellar and spherical amorphous inclusions at the interface of the continuous amorphous layer are marked by L and S.
 
 \begin{enumerate}
 \item Cross-sectional transmission electron microscopy (XTEM) image of a $Si(100)$ sample implanted with $180 \, keV$ $C^+$ ions at a fluence of $4.3 \times 10^{17} \, cm^{-2}$ and a substrate temperature of $150 \, ^{\circ} \mathrm{C}$. Lamellar and spherical amorphous inclusions at the interface of the continuous amorphous layer are marked by L and S.
-\item Schematic explaining the selforganisation of amorphous $SiC_x$ precipitates and the evolution into ordered lamellae with increasing fluence (see text).
-\item Comparison of simulation results and XTEM images ($180 \, keV$ $C^+$ implantation into silicon at $150 \, ^{\circ} \mathrm{C}$) for several fluence. Amorphous cells are white. Simulation parameters: $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, $d_v=1 \times 10^6$.
-\item Amorphous cell distribution and corresponding carbon implantation profile. The implantation profile shows the mean amount of carbon in amorphous and crystalline volumes as well as the sum for a fluence of $4.3 \times 10^{17} \, cm^{-2}$.
-\item Simulation result for a $2 \, MeV$ $C^+$ irradiation into silicon doped with $10 \, at. \%$ carbon by multiple implantation steps between $180$ and $10 \, keV$. $100 \times 10^6$ simulation steps correspond to a fluence of $2.7 \times 10^{17} \, cm^{-2}$.
+\item Schematic explaining the selforganised evolution of amorphous $SiC_x$ precipitates into ordered $SiC_x$ lamellae with increasing fluence (see text).
+\item Comparison of simulation and XTEM ($180 \, keV$ $C^+$ implantation into silicon at $150 \, ^{\circ} \mathrm{C}$) for several fluences. Amorphous cells are white. Simulation parameters: $p_b=0.01$, $p_c=0.001 \times (3\, nm)^3$, $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$.
+\item Depth distribution of amorphous cells (white) (a) and corresponding carbon concentration profile for a fluence of $4.3 \times 10^{17} \, cm^{-2}$ (b) that shows separately the mean amount of carbon in amorphous and crystalline volumes as well as the sum of both.
+\item Prediction of the self-organised formation of amorphous nanolamellae upon $2 \, MeV$ $C^+$ irradiation of silicon homogeneously doped within the top $500 \, nm$ with $10 \, at. \%$ carbon.  The fluence increases from (a) to (f) with $100 \times 10^6$ simulation steps corresponding to a fluence of $2.7 \times 10^{17} \, cm^{-2}$.
 \end{enumerate}
 
 \newpage
 \end{enumerate}
 
 \newpage
@@ -205,7 +205,7 @@ Finally a technique is proposed to produce thick films of ordered lamellar nanos
 \newpage
 \begin{figure}[!h]
 \begin{center}
 \newpage
 \begin{figure}[!h]
 \begin{center}
-\includegraphics[width=14cm]{modell_ng_e.eps}
+\includegraphics[width=14cm]{modell_ng_e_nimb.eps}
 \caption[2]{}
 \end{center}
 \label{img:model}
 \caption[2]{}
 \end{center}
 \label{img:model}
@@ -214,7 +214,7 @@ Finally a technique is proposed to produce thick films of ordered lamellar nanos
 \newpage
 \begin{figure}[!h]
 \begin{center}
 \newpage
 \begin{figure}[!h]
 \begin{center}
-\includegraphics[width=14cm]{dosis_entwicklung_all_e.eps}
+\includegraphics[width=14cm]{dosis_entwicklung_all_e_2.eps}
 \caption[3]{}
 \end{center}
 \label{img:dose_cmp}
 \caption[3]{}
 \end{center}
 \label{img:dose_cmp}
@@ -223,7 +223,7 @@ Finally a technique is proposed to produce thick films of ordered lamellar nanos
 \newpage
 \begin{figure}[!h]
 \begin{center}
 \newpage
 \begin{figure}[!h]
 \begin{center}
-\includegraphics[width=14cm]{ac_cconc_ver2_e.eps}
+\includegraphics[width=14cm]{ac_cconc_ver3_e.eps}
 \caption[4]{}
 \end{center}
 \label{img:carbon_distr}
 \caption[4]{}
 \end{center}
 \label{img:carbon_distr}
@@ -232,7 +232,7 @@ Finally a technique is proposed to produce thick films of ordered lamellar nanos
 \newpage
 \begin{figure}[!h]
 \begin{center}
 \newpage
 \begin{figure}[!h]
 \begin{center}
-\includegraphics[width=14cm]{multiple_impl_e.eps}
+\includegraphics[width=14cm]{multiple_impl_e_2.eps}
 \caption[5]{}
 \end{center}
 \label{img:broad_lam}
 \caption[5]{}
 \end{center}
 \label{img:broad_lam}