X-Git-Url: https://www.hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=f6c3c81d4bbf95b5787474dbd03e18bea90e183e;hb=cb177e7c208a85b45d77b09fcada23b62d0248b5;hp=08901c783452a006b638787351b735e20e2a56c3;hpb=3961d57b84198e336085fd79263fec40837066a0;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 08901c7..f6c3c81 100644 --- a/moldyn.c +++ b/moldyn.c @@ -5,44 +5,360 @@ * */ -#include "moldyn.h" - +#define _GNU_SOURCE #include #include +#include +#include +#include +#include +#include #include -#include "math/math.h" -#include "init/init.h" -#include "random/random.h" -#include "visual/visual.h" +#include "moldyn.h" +#include "report/report.h" +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { -int create_lattice(unsigned char type,int element,double mass,double lc, - int a,int b,int c,t_atom **atom) { + printf("[moldyn] init\n"); - int count; + memset(moldyn,0,sizeof(t_moldyn)); + + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; + + return 0; +} + +int moldyn_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] shutdown\n"); + + moldyn_log_shutdown(moldyn); + link_cell_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); + + return 0; +} + +int set_int_alg(t_moldyn *moldyn,u8 algo) { + + printf("[moldyn] integration algorithm: "); + + switch(algo) { + case MOLDYN_INTEGRATE_VERLET: + moldyn->integrate=velocity_verlet; + printf("velocity verlet\n"); + break; + default: + printf("unknown integration algorithm: %02x\n",algo); + printf("unknown\n"); + return -1; + } + + return 0; +} + +int set_cutoff(t_moldyn *moldyn,double cutoff) { + + moldyn->cutoff=cutoff; + + printf("[moldyn] cutoff [A]: %f\n",moldyn->cutoff); + + return 0; +} + +int set_temperature(t_moldyn *moldyn,double t_ref) { + + moldyn->t_ref=t_ref; + + printf("[moldyn] temperature [K]: %f\n",moldyn->t_ref); + + return 0; +} + +int set_pressure(t_moldyn *moldyn,double p_ref) { + + moldyn->p_ref=p_ref; + + printf("[moldyn] pressure [atm]: %f\n",moldyn->p_ref/ATM); + + return 0; +} + +int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) { + + moldyn->pt_scale=(ptype|ttype); + moldyn->t_tc=ttc; + moldyn->p_tc=ptc; + + printf("[moldyn] p/t scaling:\n"); + + printf(" p: %s",ptype?"yes":"no "); + if(ptype) + printf(" | type: %02x | factor: %f",ptype,ptc); + printf("\n"); + + printf(" t: %s",ttype?"yes":"no "); + if(ttype) + printf(" | type: %02x | factor: %f",ttype,ttc); + printf("\n"); + + return 0; +} + +int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { + + moldyn->dim.x=x; + moldyn->dim.y=y; + moldyn->dim.z=z; + + moldyn->volume=x*y*z; + + if(visualize) { + moldyn->vis.dim.x=x; + moldyn->vis.dim.y=y; + moldyn->vis.dim.z=z; + } + + moldyn->dv=0.000001*moldyn->volume; + + printf("[moldyn] dimensions in A and A^3 respectively:\n"); + printf(" x: %f\n",moldyn->dim.x); + printf(" y: %f\n",moldyn->dim.y); + printf(" z: %f\n",moldyn->dim.z); + printf(" volume: %f\n",moldyn->volume); + printf(" visualize simulation box: %s\n",visualize?"yes":"no"); + printf(" delta volume (pressure calc): %f\n",moldyn->dv); + + return 0; +} + +int set_nn_dist(t_moldyn *moldyn,double dist) { + + moldyn->nnd=dist; + + return 0; +} + +int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { + + printf("[moldyn] periodic boundary conditions:\n"); + + if(x) + moldyn->status|=MOLDYN_STAT_PBX; + + if(y) + moldyn->status|=MOLDYN_STAT_PBY; + + if(z) + moldyn->status|=MOLDYN_STAT_PBZ; + + printf(" x: %s\n",x?"yes":"no"); + printf(" y: %s\n",y?"yes":"no"); + printf(" z: %s\n",z?"yes":"no"); + + return 0; +} + +int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { + + moldyn->func1b=func; + moldyn->pot1b_params=params; + + return 0; +} + +int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { + + moldyn->func2b=func; + moldyn->pot2b_params=params; + + return 0; +} + +int set_potential2b_post(t_moldyn *moldyn,pf_func2b_post func,void *params) { + + moldyn->func2b_post=func; + moldyn->pot2b_params=params; + + return 0; +} + +int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { + + moldyn->func3b=func; + moldyn->pot3b_params=params; + + return 0; +} + +int moldyn_set_log_dir(t_moldyn *moldyn,char *dir) { + + strncpy(moldyn->vlsdir,dir,127); + + return 0; +} + +int moldyn_set_report(t_moldyn *moldyn,char *author,char *title) { + + strncpy(moldyn->rauthor,author,63); + strncpy(moldyn->rtitle,title,63); + + return 0; +} + +int moldyn_set_log(t_moldyn *moldyn,u8 type,int timer) { + + char filename[128]; + int ret; + + printf("[moldyn] set log: "); + + switch(type) { + case LOG_TOTAL_ENERGY: + moldyn->ewrite=timer; + snprintf(filename,127,"%s/energy",moldyn->vlsdir); + moldyn->efd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->efd<0) { + perror("[moldyn] energy log fd open"); + return moldyn->efd; + } + dprintf(moldyn->efd,"# total energy log file\n"); + printf("total energy (%d)\n",timer); + break; + case LOG_TOTAL_MOMENTUM: + moldyn->mwrite=timer; + snprintf(filename,127,"%s/momentum",moldyn->vlsdir); + moldyn->mfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->mfd<0) { + perror("[moldyn] momentum log fd open"); + return moldyn->mfd; + } + dprintf(moldyn->efd,"# total momentum log file\n"); + printf("total momentum (%d)\n",timer); + break; + case SAVE_STEP: + moldyn->swrite=timer; + printf("save file (%d)\n",timer); + break; + case VISUAL_STEP: + moldyn->vwrite=timer; + ret=visual_init(&(moldyn->vis),moldyn->vlsdir); + if(ret<0) { + printf("[moldyn] visual init failure\n"); + return ret; + } + printf("visual file (%d)\n",timer); + break; + case CREATE_REPORT: + snprintf(filename,127,"%s/report.tex",moldyn->vlsdir); + moldyn->rfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->rfd<0) { + perror("[moldyn] report fd open"); + return moldyn->rfd; + } + snprintf(filename,127,"%s/plot.scr",moldyn->vlsdir); + moldyn->pfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->pfd<0) { + perror("[moldyn] plot fd open"); + return moldyn->pfd; + } + dprintf(moldyn->rfd,report_start, + moldyn->rauthor,moldyn->rtitle); + dprintf(moldyn->pfd,plot_script); + close(moldyn->pfd); + break; + default: + printf("unknown log type: %02x\n",type); + return -1; + } + + return 0; +} + +int moldyn_log_shutdown(t_moldyn *moldyn) { + + char sc[256]; + + printf("[moldyn] log shutdown\n"); + if(moldyn->efd) close(moldyn->efd); + if(moldyn->mfd) close(moldyn->mfd); + if(moldyn->rfd) { + dprintf(moldyn->rfd,report_end); + close(moldyn->rfd); + snprintf(sc,255,"cd %s && gnuplot plot.scr",moldyn->vlsdir); + system(sc); + snprintf(sc,255,"cd %s && pdflatex report",moldyn->vlsdir); + system(sc); + snprintf(sc,255,"cd %s && pdflatex report",moldyn->vlsdir); + system(sc); + snprintf(sc,255,"cd %s && dvipdf report",moldyn->vlsdir); + system(sc); + } + if(&(moldyn->vis)) visual_tini(&(moldyn->vis)); + + return 0; +} + +/* + * creating lattice functions + */ + +int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, + u8 attr,u8 brand,int a,int b,int c) { + + int new,count; int ret; t_3dvec origin; + void *ptr; + t_atom *atom; - count=a*b*c; + new=a*b*c; + count=moldyn->count; - if(type==FCC) count*=4; - if(type==DIAMOND) count*=8; + /* how many atoms do we expect */ + if(type==CUBIC) new*=1; + if(type==FCC) new*=4; + if(type==DIAMOND) new*=8; - *atom=malloc(count*sizeof(t_atom)); - if(*atom==NULL) { - perror("malloc (atoms)"); + /* allocate space for atoms */ + ptr=realloc(moldyn->atom,(count+new)*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (create lattice)"); return -1; } + moldyn->atom=ptr; + atom=&(moldyn->atom[count]); - v3_zero(&origin); + /* no atoms on the boundaries (only reason: it looks better!) */ + origin.x=0.5*lc; + origin.y=0.5*lc; + origin.z=0.5*lc; switch(type) { + case CUBIC: + set_nn_dist(moldyn,lc); + ret=cubic_init(a,b,c,lc,atom,&origin); + break; case FCC: - ret=fcc_init(a,b,c,lc,*atom,&origin); + v3_scale(&origin,&origin,0.5); + set_nn_dist(moldyn,0.5*sqrt(2.0)*lc); + ret=fcc_init(a,b,c,lc,atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,*atom,&origin); + v3_scale(&origin,&origin,0.25); + set_nn_dist(moldyn,0.25*sqrt(3.0)*lc); + ret=diamond_init(a,b,c,lc,atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -50,30 +366,178 @@ int create_lattice(unsigned char type,int element,double mass,double lc, } /* debug */ - if(ret!=count) { - printf("ok, there is something wrong ...\n"); - printf("calculated -> %d atoms\n",count); - printf("created -> %d atoms\n",ret); + if(ret!=new) { + printf("[moldyn] creating lattice failed\n"); + printf(" amount of atoms\n"); + printf(" - expected: %d\n",new); + printf(" - created: %d\n",ret); return -1; } - while(count) { - (*atom)[count-1].element=element; - (*atom)[count-1].mass=mass; - count-=1; + moldyn->count+=new; + printf("[moldyn] created lattice with %d atoms\n",new); + + for(ret=0;retatom; + count=(moldyn->count)++; + + ptr=realloc(atom,(count+1)*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (add atom)"); + return -1; + } + moldyn->atom=ptr; + + atom=moldyn->atom; + atom[count].r=*r; + atom[count].v=*v; + atom[count].element=element; + atom[count].mass=mass; + atom[count].brand=brand; + atom[count].tag=count; + atom[count].attr=attr; + + return 0; +} + +int destroy_atoms(t_moldyn *moldyn) { - if(atom) free(atom); + if(moldyn->atom) free(moldyn->atom); return 0; } -int thermal_init(t_atom *atom,t_random *random,int count,double t) { +int thermal_init(t_moldyn *moldyn,u8 equi_init) { /* * - gaussian distribution of velocities @@ -84,11 +548,18 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) { int i; double v,sigma; t_3dvec p_total,delta; + t_atom *atom; + t_random *random; + + atom=moldyn->atom; + random=&(moldyn->random); + + printf("[moldyn] thermal init (equi init: %s)\n",equi_init?"yes":"no"); /* gaussian distribution of velocities */ v3_zero(&p_total); - for(i=0;icount;i++) { + sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass); /* x direction */ v=sigma*rand_get_gauss(random); atom[i].v.x=v; @@ -104,104 +575,668 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) { } /* zero total momentum */ - v3_scale(&p_total,&p_total,1.0/count); - for(i=0;icount); + for(i=0;icount;i++) { v3_scale(&delta,&p_total,1.0/atom[i].mass); v3_sub(&(atom[i].v),&(atom[i].v),&delta); } /* velocity scaling */ - scale_velocity(atom,count,t); + scale_velocity(moldyn,equi_init); return 0; } -int scale_velocity(t_atom *atom,int count,double t) { +double temperature_calc(t_moldyn *moldyn) { + + /* assume up to date kinetic energy, which is 3/2 N k_B T */ + + moldyn->t=(2.0*moldyn->ekin)/(3.0*K_BOLTZMANN*moldyn->count); + + return moldyn->t; +} + +double get_temperature(t_moldyn *moldyn) { + + return moldyn->t; +} + +int scale_velocity(t_moldyn *moldyn,u8 equi_init) { int i; - double e,c; + double e,scale; + t_atom *atom; + int count; + + atom=moldyn->atom; /* * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ + + /* get kinetic energy / temperature & count involved atoms */ e=0.0; - for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) { + e+=atom[i].mass*v3_absolute_square(&(atom[i].v)); + count+=1; + } + } + e*=0.5; + if(count!=0) moldyn->t=e/(1.5*count*K_BOLTZMANN); + else return 0; /* no atoms involved in scaling! */ + + /* (temporary) hack for e,t = 0 */ + if(e==0.0) { + moldyn->t=0.0; + if(moldyn->t_ref!=0.0) { + thermal_init(moldyn,equi_init); + return 0; + } + else + return 0; /* no scaling needed */ + } + + + /* get scaling factor */ + scale=moldyn->t_ref/moldyn->t; + if(equi_init&TRUE) + scale*=2.0; + else + if(moldyn->pt_scale&T_SCALE_BERENDSEN) + scale=1.0+(scale-1.0)/moldyn->t_tc; + scale=sqrt(scale); + + /* velocity scaling */ + for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) + v3_scale(&(atom[i].v),&(atom[i].v),scale); + } return 0; } -double get_e_kin(t_atom *atom,int count) { +double ideal_gas_law_pressure(t_moldyn *moldyn) { + + double p; + + p=moldyn->count*moldyn->t*K_BOLTZMANN/moldyn->volume; + + return p; +} + +double pressure_calc(t_moldyn *moldyn) { int i; - double e; + double v; + t_virial *virial; - e=0.0; + /* + * P = 1/(3V) sum_i ( p_i^2 / 2m + f_i r_i ) + * + * virial = f_i r_i + */ - for(i=0;icount;i++) { + virial=&(moldyn->atom[i].virial); + v+=(virial->xx+virial->yy+virial->zz); + } + + /* assume up to date kinetic energy */ + moldyn->p=2.0*moldyn->ekin+v; + moldyn->p/=(3.0*moldyn->volume); + + return moldyn->p; +} + +double thermodynamic_pressure_calc(t_moldyn *moldyn) { + + t_3dvec dim,*tp; + double u,p; + double scale; + t_atom *store; + + tp=&(moldyn->tp); + store=malloc(moldyn->count*sizeof(t_atom)); + if(store==NULL) { + printf("[moldyn] allocating store mem failed\n"); + return -1; } - return e; + /* save unscaled potential energy + atom/dim configuration */ + u=moldyn->energy; + memcpy(store,moldyn->atom,moldyn->count*sizeof(t_atom)); + dim=moldyn->dim; + + /* derivative with respect to x direction */ + scale=1.0+moldyn->dv/(moldyn->dim.y*moldyn->dim.z); + scale_dim(moldyn,scale,TRUE,0,0); + scale_atoms(moldyn,scale,TRUE,0,0); + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + potential_force_calc(moldyn); + tp->x=(moldyn->energy-u)/moldyn->dv; + p=tp->x*tp->x; + + /* restore atomic configuration + dim */ + memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom)); + moldyn->dim=dim; + + /* derivative with respect to y direction */ + scale=1.0+moldyn->dv/(moldyn->dim.x*moldyn->dim.z); + scale_dim(moldyn,scale,0,TRUE,0); + scale_atoms(moldyn,scale,0,TRUE,0); + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + potential_force_calc(moldyn); + tp->y=(moldyn->energy-u)/moldyn->dv; + p+=tp->y*tp->y; + + /* restore atomic configuration + dim */ + memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom)); + moldyn->dim=dim; + + /* derivative with respect to z direction */ + scale=1.0+moldyn->dv/(moldyn->dim.x*moldyn->dim.y); + scale_dim(moldyn,scale,0,0,TRUE); + scale_atoms(moldyn,scale,0,0,TRUE); + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + potential_force_calc(moldyn); + tp->z=(moldyn->energy-u)/moldyn->dv; + p+=tp->z*tp->z; + + /* restore atomic configuration + dim */ + memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom)); + moldyn->dim=dim; + + printf("dU/dV komp addiert = %f %f %f\n",tp->x,tp->y,tp->z); + + scale=1.0+pow(moldyn->dv/moldyn->volume,ONE_THIRD); + +printf("debug: %f %f\n",moldyn->atom[0].r.x,moldyn->dim.x); + scale_dim(moldyn,scale,1,1,1); + scale_atoms(moldyn,scale,1,1,1); + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + potential_force_calc(moldyn); +printf("debug: %f %f\n",moldyn->atom[0].r.x,moldyn->dim.x); + + printf("dU/dV einfach = %f\n",((moldyn->energy-u)/moldyn->dv)/ATM); + + /* restore atomic configuration + dim */ + memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom)); + moldyn->dim=dim; + + /* restore energy */ + moldyn->energy=u; + + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + + return sqrt(p); } -double get_e_pot(t_moldyn *moldyn) { +double get_pressure(t_moldyn *moldyn) { + + return moldyn->p; - return(moldyn->potential(moldyn)); } -double get_total_energy(t_moldyn *moldyn) { +int scale_dim(t_moldyn *moldyn,double scale,u8 x,u8 y,u8 z) { + + t_3dvec *dim; - double e; + dim=&(moldyn->dim); - e=get_e_kin(moldyn->atom,moldyn->count); - e+=get_e_pot(moldyn); + if(x) dim->x*=scale; + if(y) dim->y*=scale; + if(z) dim->z*=scale; - return e; + return 0; } -t_3dvec get_total_p(t_atom *atom, int count) { +int scale_atoms(t_moldyn *moldyn,double scale,u8 x,u8 y,u8 z) { - t_3dvec p,p_total; int i; + t_3dvec *r; - v3_zero(&p_total); - for(i=0;icount;i++) { + r=&(moldyn->atom[i].r); + if(x) r->x*=scale; + if(y) r->y*=scale; + if(z) r->z*=scale; } - return p_total; + return 0; } +int scale_volume(t_moldyn *moldyn) { -/* - * - * 'integration of newtons equation' - algorithms - * - */ - -/* start the integration */ + t_3dvec *dim,*vdim; + double scale; + t_linkcell *lc; -int moldyn_integrate(t_moldyn *moldyn) { + vdim=&(moldyn->vis.dim); + dim=&(moldyn->dim); + lc=&(moldyn->lc); - int i; + /* scaling factor */ + if(moldyn->pt_scale&P_SCALE_BERENDSEN) { + scale=1.0-(moldyn->p_ref-moldyn->p)/moldyn->p_tc; + scale=pow(scale,ONE_THIRD); + } + else { + scale=pow(moldyn->p/moldyn->p_ref,ONE_THIRD); + } +moldyn->debug=scale; - /* calculate initial forces */ - moldyn->force(moldyn); + /* scale the atoms and dimensions */ + scale_atoms(moldyn,scale,TRUE,TRUE,TRUE); + scale_dim(moldyn,scale,TRUE,TRUE,TRUE); - for(i=0;itime_steps;i++) { - /* integration step */ - moldyn->integrate(moldyn); + /* visualize dimensions */ + if(vdim->x!=0) { + vdim->x=dim->x; + vdim->y=dim->y; + vdim->z=dim->z; + } + + /* recalculate scaled volume */ + moldyn->volume=dim->x*dim->y*dim->z; + + /* adjust/reinit linkcell */ + if(((int)(dim->x/moldyn->cutoff)!=lc->nx)|| + ((int)(dim->y/moldyn->cutoff)!=lc->ny)|| + ((int)(dim->z/moldyn->cutoff)!=lc->nx)) { + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + } else { + lc->x*=scale; + lc->y*=scale; + lc->z*=scale; + } + + return 0; + +} + +double get_e_kin(t_moldyn *moldyn) { + + int i; + t_atom *atom; + + atom=moldyn->atom; + moldyn->ekin=0.0; + + for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + + return moldyn->ekin; +} + +double update_e_kin(t_moldyn *moldyn) { + + return(get_e_kin(moldyn)); +} + +double get_total_energy(t_moldyn *moldyn) { + + return(moldyn->ekin+moldyn->energy); +} + +t_3dvec get_total_p(t_moldyn *moldyn) { + + t_3dvec p,p_total; + int i; + t_atom *atom; + + atom=moldyn->atom; + + v3_zero(&p_total); + for(i=0;icount;i++) { + v3_scale(&p,&(atom[i].v),atom[i].mass); + v3_add(&p_total,&p_total,&p); + } + + return p_total; +} + +double estimate_time_step(t_moldyn *moldyn,double nn_dist) { + + double tau; + + /* nn_dist is the nearest neighbour distance */ + + tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t); + + return tau; +} + +/* + * numerical tricks + */ + +/* linked list / cell method */ + +int link_cell_init(t_moldyn *moldyn,u8 vol) { + + t_linkcell *lc; + int i; + + lc=&(moldyn->lc); + + /* partitioning the md cell */ + lc->nx=moldyn->dim.x/moldyn->cutoff; + lc->x=moldyn->dim.x/lc->nx; + lc->ny=moldyn->dim.y/moldyn->cutoff; + lc->y=moldyn->dim.y/lc->ny; + lc->nz=moldyn->dim.z/moldyn->cutoff; + lc->z=moldyn->dim.z/lc->nz; + + lc->cells=lc->nx*lc->ny*lc->nz; + lc->subcell=malloc(lc->cells*sizeof(t_list)); + + if(lc->cells<27) + printf("[moldyn] FATAL: less then 27 subcells!\n"); + + if(vol) printf("[moldyn] initializing linked cells (%d)\n",lc->cells); + + for(i=0;icells;i++) + list_init_f(&(lc->subcell[i])); + + link_cell_update(moldyn); + + return 0; +} + +int link_cell_update(t_moldyn *moldyn) { + + int count,i,j,k; + int nx,ny; + t_atom *atom; + t_linkcell *lc; + double x,y,z; + + atom=moldyn->atom; + lc=&(moldyn->lc); + + nx=lc->nx; + ny=lc->ny; + + x=moldyn->dim.x/2; + y=moldyn->dim.y/2; + z=moldyn->dim.z/2; + + for(i=0;icells;i++) + list_destroy_f(&(lc->subcell[i])); + + for(count=0;countcount;count++) { + i=((atom[count].r.x+(moldyn->dim.x/2))/lc->x); + j=((atom[count].r.y+(moldyn->dim.y/2))/lc->y); + k=((atom[count].r.z+(moldyn->dim.z/2))/lc->z); + list_add_immediate_f(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]), + &(atom[count])); + } + + return 0; +} + +int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { + + t_linkcell *lc; + int a; + int count1,count2; + int ci,cj,ck; + int nx,ny,nz; + int x,y,z; + u8 bx,by,bz; + + lc=&(moldyn->lc); + nx=lc->nx; + ny=lc->ny; + nz=lc->nz; + count1=1; + count2=27; + a=nx*ny; + + cell[0]=lc->subcell[i+j*nx+k*a]; + for(ci=-1;ci<=1;ci++) { + bx=0; + x=i+ci; + if((x<0)||(x>=nx)) { + x=(x+nx)%nx; + bx=1; + } + for(cj=-1;cj<=1;cj++) { + by=0; + y=j+cj; + if((y<0)||(y>=ny)) { + y=(y+ny)%ny; + by=1; + } + for(ck=-1;ck<=1;ck++) { + bz=0; + z=k+ck; + if((z<0)||(z>=nz)) { + z=(z+nz)%nz; + bz=1; + } + if(!(ci|cj|ck)) continue; + if(bx|by|bz) { + cell[--count2]=lc->subcell[x+y*nx+z*a]; + } + else { + cell[count1++]=lc->subcell[x+y*nx+z*a]; + } + } + } + } + + lc->dnlc=count1; + + return count1; +} + +int link_cell_shutdown(t_moldyn *moldyn) { + + int i; + t_linkcell *lc; + + lc=&(moldyn->lc); + + for(i=0;inx*lc->ny*lc->nz;i++) + list_destroy_f(&(moldyn->lc.subcell[i])); + + free(lc->subcell); + + return 0; +} + +int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { + + int count; + void *ptr; + t_moldyn_schedule *schedule; + + schedule=&(moldyn->schedule); + count=++(schedule->total_sched); + + ptr=realloc(schedule->runs,count*sizeof(int)); + if(!ptr) { + perror("[moldyn] realloc (runs)"); + return -1; + } + schedule->runs=ptr; + schedule->runs[count-1]=runs; + + ptr=realloc(schedule->tau,count*sizeof(double)); + if(!ptr) { + perror("[moldyn] realloc (tau)"); + return -1; + } + schedule->tau=ptr; + schedule->tau[count-1]=tau; + + printf("[moldyn] schedule added:\n"); + printf(" number: %d | runs: %d | tau: %f\n",count-1,runs,tau); + + + return 0; +} + +int moldyn_set_schedule_hook(t_moldyn *moldyn,set_hook hook,void *hook_params) { + + moldyn->schedule.hook=hook; + moldyn->schedule.hook_params=hook_params; + + return 0; +} + +/* + * + * 'integration of newtons equation' - algorithms + * + */ + +/* start the integration */ + +int moldyn_integrate(t_moldyn *moldyn) { + + int i; + unsigned int e,m,s,v; + t_3dvec p; + t_moldyn_schedule *sched; + t_atom *atom; + int fd; + char dir[128]; + double ds; + double energy_scale; + + sched=&(moldyn->schedule); + atom=moldyn->atom; + + /* initialize linked cell method */ + link_cell_init(moldyn,VERBOSE); + + /* logging & visualization */ + e=moldyn->ewrite; + m=moldyn->mwrite; + s=moldyn->swrite; + v=moldyn->vwrite; + + /* sqaure of some variables */ + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; + + /* energy scaling factor */ + energy_scale=moldyn->count*EV; + + /* calculate initial forces */ + potential_force_calc(moldyn); + + /* some stupid checks before we actually start calculating bullshit */ + if(moldyn->cutoff>0.5*moldyn->dim.x) + printf("[moldyn] warning: cutoff > 0.5 x dim.x\n"); + if(moldyn->cutoff>0.5*moldyn->dim.y) + printf("[moldyn] warning: cutoff > 0.5 x dim.y\n"); + if(moldyn->cutoff>0.5*moldyn->dim.z) + printf("[moldyn] warning: cutoff > 0.5 x dim.z\n"); + ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass; + if(ds>0.05*moldyn->nnd) + printf("[moldyn] warning: forces too high / tau too small!\n"); + + /* zero absolute time */ + moldyn->time=0.0; + + /* debugging, ignore */ + moldyn->debug=0; + + /* tell the world */ + printf("[moldyn] integration start, go get a coffee ...\n"); + + /* executing the schedule */ + for(sched->count=0;sched->counttotal_sched;sched->count++) { + + /* setting amount of runs and finite time step size */ + moldyn->tau=sched->tau[sched->count]; + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->time_steps=sched->runs[sched->count]; + + /* integration according to schedule */ + + for(i=0;itime_steps;i++) { + + /* integration step */ + moldyn->integrate(moldyn); + + /* calculate kinetic energy, temperature and pressure */ + update_e_kin(moldyn); + temperature_calc(moldyn); + pressure_calc(moldyn); + //thermodynamic_pressure_calc(moldyn); + + /* p/t scaling */ + if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT)) + scale_velocity(moldyn,FALSE); + if(moldyn->pt_scale&(P_SCALE_BERENDSEN|P_SCALE_DIRECT)) + scale_volume(moldyn); + + /* check for log & visualization */ + if(e) { + if(!(i%e)) + dprintf(moldyn->efd, + "%f %f %f %f\n", + moldyn->time,moldyn->ekin/energy_scale, + moldyn->energy/energy_scale, + get_total_energy(moldyn)/energy_scale); + } + if(m) { + if(!(i%m)) { + p=get_total_p(moldyn); + dprintf(moldyn->mfd, + "%f %f\n",moldyn->time,v3_norm(&p)); + } + } + if(s) { + if(!(i%s)) { + snprintf(dir,128,"%s/s-%07.f.save", + moldyn->vlsdir,moldyn->time); + fd=open(dir,O_WRONLY|O_TRUNC|O_CREAT); + if(fd<0) perror("[moldyn] save fd open"); + else { + write(fd,moldyn,sizeof(t_moldyn)); + write(fd,moldyn->atom, + moldyn->count*sizeof(t_atom)); + } + close(fd); + } + } + if(v) { + if(!(i%v)) { + visual_atoms(&(moldyn->vis),moldyn->time, + moldyn->atom,moldyn->count); + printf("\rsched: %d, steps: %d, T: %f, P: %f V: %f", + sched->count,i, + moldyn->t,moldyn->p/ATM,moldyn->volume); + fflush(stdout); + } + } + + /* increase absolute time */ + moldyn->time+=moldyn->tau; + + } + + /* check for hooks */ + if(sched->hook) + sched->hook(moldyn,sched->hook_params); + + /* get a new info line */ + printf("\n"); - /* check for visualiziation */ - // to be continued ... - if(!(i%100)) - visual_atoms(moldyn->visual,i*moldyn->tau, - moldyn->atom,moldyn->count); } return 0; @@ -212,34 +1247,37 @@ int moldyn_integrate(t_moldyn *moldyn) { int velocity_verlet(t_moldyn *moldyn) { int i,count; - double tau,tau_square; + double tau,tau_square,h; t_3dvec delta; t_atom *atom; atom=moldyn->atom; count=moldyn->count; tau=moldyn->tau; - - tau_square=tau*tau; + tau_square=moldyn->tau_square; for(i=0;idim)); + check_per_bound(moldyn,&(atom[i].r)); - /* velocities */ - v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass); - v3_add(&(atom[i].r),&(atom[i].r),&delta); + /* velocities [actually v(t+tau/2)] */ + v3_scale(&delta,&(atom[i].f),h*tau); + v3_add(&(atom[i].v),&(atom[i].v),&delta); } + /* neighbour list update */ + link_cell_update(moldyn); + /* forces depending on chosen potential */ - moldyn->force(moldyn); + potential_force_calc(moldyn); for(i=0;ipot_params; - atom=moldyn->atom; count=moldyn->count; - eps=params->epsilon; - sig6=params->sigma6; - sig12=params->sigma12; + itom=moldyn->atom; + lc=&(moldyn->lc); - u=0.0; + /* reset energy */ + moldyn->energy=0.0; + + /* reset force, site energy and virial of every atom */ for(i=0;ixx=0.0; + virial->yy=0.0; + virial->zz=0.0; + virial->xy=0.0; + virial->xz=0.0; + virial->yz=0.0; + + /* reset site energy */ + itom[i].e=0.0; + + } + + /* get energy,force and virial of every atom */ + for(i=0;ifunc1b(moldyn,&(itom[i])); + + if(!(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP))) + continue; + + /* 2 body pair potential/force */ + + link_cell_neighbour_index(moldyn, + (itom[i].r.x+moldyn->dim.x/2)/lc->x, + (itom[i].r.y+moldyn->dim.y/2)/lc->y, + (itom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour_i); + + dnlc=lc->dnlc; + + for(j=0;j<27;j++) { + + this=&(neighbour_i[j]); + list_reset_f(this); + + if(this->start==NULL) + continue; + + bc_ij=(jcurrent->data; + + if(jtom==&(itom[i])) + continue; + + if((jtom->attr&ATOM_ATTR_2BP)& + (itom[i].attr&ATOM_ATTR_2BP)) { + moldyn->func2b(moldyn, + &(itom[i]), + jtom, + bc_ij); + } + + /* 3 body potential/force */ + + if(!(itom[i].attr&ATOM_ATTR_3BP)|| + !(jtom->attr&ATOM_ATTR_3BP)) + continue; + + /* copy the neighbour lists */ + memcpy(neighbour_i2,neighbour_i, + 27*sizeof(t_list)); + + /* get neighbours of i */ + for(k=0;k<27;k++) { + + that=&(neighbour_i2[k]); + list_reset_f(that); + + if(that->start==NULL) + continue; + + bc_ik=(kcurrent->data; + + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; + + if(ktom==jtom) + continue; + + if(ktom==&(itom[i])) + continue; + + moldyn->func3b(moldyn, + &(itom[i]), + jtom, + ktom, + bc_ik|bc_ij); + + } while(list_next_f(that)!=\ + L_NO_NEXT_ELEMENT); + + } + + /* 2bp post function */ + if(moldyn->func2b_post) { + moldyn->func2b_post(moldyn, + &(itom[i]), + jtom,bc_ij); + } + + } while(list_next_f(this)!=L_NO_NEXT_ELEMENT); + } + + } + +#ifdef DEBUG +printf("\n\n"); +#endif +#ifdef VDEBUG +printf("\n\n"); +#endif + + return 0; +} + +/* + * virial calculation + */ + +inline int virial_calc(t_atom *a,t_3dvec *f,t_3dvec *d) { + + a->virial.xx+=f->x*d->x; + a->virial.yy+=f->y*d->y; + a->virial.zz+=f->z*d->z; + a->virial.xy+=f->x*d->y; + a->virial.xz+=f->x*d->z; + a->virial.yz+=f->y*d->z; + + return 0; +} + +/* + * periodic boundayr checking + */ + +inline int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { + + double x,y,z; + t_3dvec *dim; + + dim=&(moldyn->dim); + + x=dim->x/2; + y=dim->y/2; + z=dim->z/2; + + if(moldyn->status&MOLDYN_STAT_PBX) { + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; } + if(moldyn->status&MOLDYN_STAT_PBY) { + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + } + if(moldyn->status&MOLDYN_STAT_PBZ) { + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + } + + return 0; +} + + +/* + * example potentials + */ + +/* harmonic oscillator potential and force */ + +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_ho_params *params; + t_3dvec force,distance; + double d,f; + double sc,equi_dist; + + params=moldyn->pot2b_params; + sc=params->spring_constant; + equi_dist=params->equilibrium_distance; + + if(air),&(ai->r)); - return u; + if(bc) check_per_bound(moldyn,&distance); + d=v3_norm(&distance); + if(d<=moldyn->cutoff) { + moldyn->energy+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); + /* f = -grad E; grad r_ij = -1 1/r_ij distance */ + f=sc*(1.0-equi_dist/d); + v3_scale(&force,&distance,f); + v3_add(&(ai->f),&(ai->f),&force); + virial_calc(ai,&force,&distance); + virial_calc(aj,&force,&distance); /* f and d signe switched */ + v3_scale(&force,&distance,-f); + v3_add(&(aj->f),&(aj->f),&force); + } + + return 0; } -int force_lennard_jones(t_moldyn *moldyn) { +/* lennard jones potential & force for one sort of atoms */ + +int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_lj_params *params; - int i,j,count; - t_atom *atom; - t_3dvec distance; - t_3dvec force; + t_3dvec force,distance; double d,h1,h2; double eps,sig6,sig12; - atom=moldyn->atom; - count=moldyn->count; - params=moldyn->pot_params; - eps=params->epsilon; + params=moldyn->pot2b_params; + eps=params->epsilon4; sig6=params->sigma6; sig12=params->sigma12; - for(i=0;ir),&(ai->r)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_absolute_square(&distance); /* 1/r^2 */ + if(d<=moldyn->cutoff_square) { + d=1.0/d; /* 1/r^2 */ + h2=d*d; /* 1/r^4 */ + h2*=d; /* 1/r^6 */ + h1=h2*h2; /* 1/r^12 */ + moldyn->energy+=(eps*(sig12*h1-sig6*h2)-params->uc); + h2*=d; /* 1/r^8 */ + h1*=d; /* 1/r^14 */ + h2*=6*sig6; + h1*=12*sig12; + d=+h1-h2; + d*=eps; + v3_scale(&force,&distance,d); + v3_add(&(aj->f),&(aj->f),&force); + v3_scale(&force,&force,-1.0); /* f = - grad E */ + v3_add(&(ai->f),&(ai->f),&force); + virial_calc(ai,&force,&distance); +if(force.x*distance.x<=0) printf("virial xx: %.15f -> %f %f %f\n",force.x*distance.x,distance.x,distance.y,distance.z); + virial_calc(aj,&force,&distance); /* f and d signe switched */ + } - for(i=0;idim)); - d=v3_absolute_square(&distance); - if(d<=moldyn->cutoff_square) { - h1=1.0/d; /* 1/r^2 */ - d=h1*h1; /* 1/r^4 */ - h2=d*d; /* 1/r^8 */ - h1*=d; /* 1/r^6 */ - h1*=h2; /* 1/r^14 */ - h1*=sig12; - h2*=sig6; - d=-12.0*h1+6.0*h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[j].f),&(atom[j].f),&force); - v3_sub(&(atom[i].f),&(atom[i].f),&force); - } + return 0; +} + +/* + * tersoff potential & force for 2 sorts of atoms + */ + +/* create mixed terms from parameters and set them */ +int tersoff_mult_complete_params(t_tersoff_mult_params *p) { + + printf("[moldyn] tersoff parameter completion\n"); + p->S2[0]=p->S[0]*p->S[0]; + p->S2[1]=p->S[1]*p->S[1]; + p->Smixed=sqrt(p->S[0]*p->S[1]); + p->S2mixed=p->Smixed*p->Smixed; + p->Rmixed=sqrt(p->R[0]*p->R[1]); + p->Amixed=sqrt(p->A[0]*p->A[1]); + p->Bmixed=sqrt(p->B[0]*p->B[1]); + p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]); + p->mu_m=0.5*(p->mu[0]+p->mu[1]); + + printf("[moldyn] tersoff mult parameter info:\n"); + printf(" S (A) | %f | %f | %f\n",p->S[0],p->S[1],p->Smixed); + printf(" R (A) | %f | %f | %f\n",p->R[0],p->R[1],p->Rmixed); + printf(" A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV); + printf(" B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV); + printf(" lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1], + p->lambda_m); + printf(" mu | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m); + printf(" beta | %.10f | %.10f\n",p->beta[0],p->beta[1]); + printf(" n | %f | %f\n",p->n[0],p->n[1]); + printf(" c | %f | %f\n",p->c[0],p->c[1]); + printf(" d | %f | %f\n",p->d[0],p->d[1]); + printf(" h | %f | %f\n",p->h[0],p->h[1]); + printf(" chi | %f \n",p->chi); + + return 0; +} + +/* tersoff 1 body part */ +int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { + + int brand; + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + brand=ai->brand; + params=moldyn->pot1b_params; + exchange=&(params->exchange); + + /* + * simple: point constant parameters only depending on atom i to + * their right values + */ + + exchange->beta_i=&(params->beta[brand]); + exchange->n_i=&(params->n[brand]); + exchange->c_i=&(params->c[brand]); + exchange->d_i=&(params->d[brand]); + exchange->h_i=&(params->h[brand]); + + exchange->betaini=pow(*(exchange->beta_i),*(exchange->n_i)); + exchange->ci2=params->c[brand]*params->c[brand]; + exchange->di2=params->d[brand]*params->d[brand]; + exchange->ci2di2=exchange->ci2/exchange->di2; + + return 0; +} + +/* tersoff 2 body part */ +int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,force; + double d_ij,d_ij2; + double A,B,R,S,S2,lambda,mu; + double f_r,df_r; + double f_c,df_c; + int brand; + double s_r; + double arg; + + params=moldyn->pot2b_params; + brand=aj->brand; + exchange=&(params->exchange); + + /* clear 3bp and 2bp post run */ + exchange->run3bp=0; + exchange->run2bp_post=0; + + /* reset S > r > R mark */ + exchange->d_ij_between_rs=0; + + /* + * calc of 2bp contribution of V_ij and dV_ij/ji + * + * for Vij and dV_ij we need: + * - f_c_ij, df_c_ij + * - f_r_ij, df_r_ij + * + * for dV_ji we need: + * - f_c_ji = f_c_ij, df_c_ji = df_c_ij + * - f_r_ji = f_r_ij; df_r_ji = df_r_ij + * + */ + + /* constants */ + if(brand==ai->brand) { + S=params->S[brand]; + S2=params->S2[brand]; + R=params->R[brand]; + A=params->A[brand]; + B=params->B[brand]; + lambda=params->lambda[brand]; + mu=params->mu[brand]; + exchange->chi=1.0; + } + else { + S=params->Smixed; + S2=params->S2mixed; + R=params->Rmixed; + A=params->Amixed; + B=params->Bmixed; + lambda=params->lambda_m; + mu=params->mu_m; + params->exchange.chi=params->chi; + } + + /* dist_ij, d_ij */ + v3_sub(&dist_ij,&(aj->r),&(ai->r)); + if(bc) check_per_bound(moldyn,&dist_ij); + d_ij2=v3_absolute_square(&dist_ij); + + /* if d_ij2 > S2 => no force & potential energy contribution */ + if(d_ij2>S2) + return 0; + + /* now we will need the distance */ + //d_ij=v3_norm(&dist_ij); + d_ij=sqrt(d_ij2); + + /* save for use in 3bp */ + exchange->d_ij=d_ij; + exchange->d_ij2=d_ij2; + exchange->dist_ij=dist_ij; + + /* more constants */ + exchange->beta_j=&(params->beta[brand]); + exchange->n_j=&(params->n[brand]); + exchange->c_j=&(params->c[brand]); + exchange->d_j=&(params->d[brand]); + exchange->h_j=&(params->h[brand]); + if(brand==ai->brand) { + exchange->betajnj=exchange->betaini; + exchange->cj2=exchange->ci2; + exchange->dj2=exchange->di2; + exchange->cj2dj2=exchange->ci2di2; + } + else { + exchange->betajnj=pow(*(exchange->beta_j),*(exchange->n_j)); + exchange->cj2=params->c[brand]*params->c[brand]; + exchange->dj2=params->d[brand]*params->d[brand]; + exchange->cj2dj2=exchange->cj2/exchange->dj2; + } + + /* f_r_ij = f_r_ji, df_r_ij = df_r_ji */ + f_r=A*exp(-lambda*d_ij); + df_r=lambda*f_r/d_ij; + + /* f_a, df_a calc (again, same for ij and ji) | save for later use! */ + exchange->f_a=-B*exp(-mu*d_ij); + exchange->df_a=mu*exchange->f_a/d_ij; + + /* f_c, df_c calc (again, same for ij and ji) */ + if(d_ij r > R */ + exchange->d_ij_between_rs=1; + } + + /* add forces of 2bp (ij, ji) contribution + * dVij = dVji and we sum up both: no 1/2) */ + v3_add(&(ai->f),&(ai->f),&force); + + /* virial */ + ai->virial.xx-=force.x*dist_ij.x; + ai->virial.yy-=force.y*dist_ij.y; + ai->virial.zz-=force.z*dist_ij.z; + ai->virial.xy-=force.x*dist_ij.y; + ai->virial.xz-=force.x*dist_ij.z; + ai->virial.yz-=force.y*dist_ij.z; + +#ifdef DEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVij, dVji (2bp) contrib:\n"); + printf("%f | %f\n",force.x,ai->f.x); + printf("%f | %f\n",force.y,ai->f.y); + printf("%f | %f\n",force.z,ai->f.z); +} +#endif +#ifdef VDEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVij, dVji (2bp) contrib:\n"); + printf("%f | %f\n",force.x*dist_ij.x,ai->virial.xx); + printf("%f | %f\n",force.y*dist_ij.y,ai->virial.yy); + printf("%f | %f\n",force.z*dist_ij.z,ai->virial.zz); +} +#endif + + /* energy 2bp contribution (ij, ji) is 0.5 f_r f_c ... */ + moldyn->energy+=(0.5*f_r*f_c); + + /* save for use in 3bp */ + exchange->f_c=f_c; + exchange->df_c=df_c; + + /* enable the run of 3bp function and 2bp post processing */ + exchange->run3bp=1; + exchange->run2bp_post=1; + + /* reset 3bp sums */ + exchange->zeta_ij=0.0; + exchange->zeta_ji=0.0; + v3_zero(&(exchange->dzeta_ij)); + v3_zero(&(exchange->dzeta_ji)); + + return 0; +} + +/* tersoff 2 body post part */ + +int tersoff_mult_post_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + /* + * here we have to allow for the 3bp sums + * + * that is: + * - zeta_ij, dzeta_ij + * - zeta_ji, dzeta_ji + * + * to compute the 3bp contribution to: + * - Vij, dVij + * - dVji + * + */ + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + t_3dvec force,temp; + t_3dvec *dist_ij; + double b,db,tmp; + double f_c,df_c,f_a,df_a; + double chi,ni,betaini,nj,betajnj; + double zeta; + + params=moldyn->pot2b_params; + exchange=&(params->exchange); + + /* we do not run if f_c_ij was detected to be 0! */ + if(!(exchange->run2bp_post)) + return 0; + + f_c=exchange->f_c; + df_c=exchange->df_c; + f_a=exchange->f_a; + df_a=exchange->df_a; + betaini=exchange->betaini; + betajnj=exchange->betajnj; + ni=*(exchange->n_i); + nj=*(exchange->n_j); + chi=exchange->chi; + dist_ij=&(exchange->dist_ij); + + /* Vij and dVij */ + zeta=exchange->zeta_ij; + if(zeta==0.0) { + moldyn->debug++; /* just for debugging ... */ + b=chi; + v3_scale(&force,dist_ij,df_a*b*f_c); + } + else { + tmp=betaini*pow(zeta,ni-1.0); /* beta^n * zeta^n-1 */ + b=(1+zeta*tmp); /* 1 + beta^n zeta^n */ + db=chi*pow(b,-1.0/(2*ni)-1); /* x(...)^(-1/2n - 1) */ + b=db*b; /* b_ij */ + db*=-0.5*tmp; /* db_ij */ + v3_scale(&force,&(exchange->dzeta_ij),f_a*db); + v3_scale(&temp,dist_ij,df_a*b); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,f_c); + } + v3_scale(&temp,dist_ij,df_c*b*f_a); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,-0.5); + + /* add force */ + v3_add(&(ai->f),&(ai->f),&force); + + /* virial */ + ai->virial.xx-=force.x*dist_ij->x; + ai->virial.yy-=force.y*dist_ij->y; + ai->virial.zz-=force.z*dist_ij->z; + ai->virial.xy-=force.x*dist_ij->y; + ai->virial.xz-=force.x*dist_ij->z; + ai->virial.yz-=force.y*dist_ij->z; + +#ifdef DEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVij (3bp) contrib:\n"); + printf("%f | %f\n",force.x,ai->f.x); + printf("%f | %f\n",force.y,ai->f.y); + printf("%f | %f\n",force.z,ai->f.z); +} +#endif +#ifdef VDEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVij (3bp) contrib:\n"); + printf("%f | %f\n",force.x*dist_ij->x,ai->virial.xx); + printf("%f | %f\n",force.y*dist_ij->y,ai->virial.yy); + printf("%f | %f\n",force.z*dist_ij->z,ai->virial.zz); +} +#endif + + /* add energy of 3bp sum */ + moldyn->energy+=(0.5*f_c*b*f_a); + + /* dVji */ + zeta=exchange->zeta_ji; + if(zeta==0.0) { + moldyn->debug++; + b=chi; + v3_scale(&force,dist_ij,df_a*b*f_c); + } + else { + tmp=betajnj*pow(zeta,nj-1.0); /* beta^n * zeta^n-1 */ + b=(1+zeta*tmp); /* 1 + beta^n zeta^n */ + db=chi*pow(b,-1.0/(2*nj)-1); /* x(...)^(-1/2n - 1) */ + b=db*b; /* b_ij */ + db*=-0.5*tmp; /* db_ij */ + v3_scale(&force,&(exchange->dzeta_ji),f_a*db); + v3_scale(&temp,dist_ij,df_a*b); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,f_c); + } + v3_scale(&temp,dist_ij,df_c*b*f_a); + v3_add(&force,&force,&temp); + v3_scale(&force,&force,-0.5); + + /* add force */ + v3_add(&(ai->f),&(ai->f),&force); + + /* virial - plus sign, as dist_ij = - dist_ji - (really??) */ +// TEST ... with a minus instead + ai->virial.xx-=force.x*dist_ij->x; + ai->virial.yy-=force.y*dist_ij->y; + ai->virial.zz-=force.z*dist_ij->z; + ai->virial.xy-=force.x*dist_ij->y; + ai->virial.xz-=force.x*dist_ij->z; + ai->virial.yz-=force.y*dist_ij->z; + +#ifdef DEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVji (3bp) contrib:\n"); + printf("%f | %f\n",force.x,ai->f.x); + printf("%f | %f\n",force.y,ai->f.y); + printf("%f | %f\n",force.z,ai->f.z); +} +#endif +#ifdef VDEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVji (3bp) contrib:\n"); + printf("%f | %f\n",force.x*dist_ij->x,ai->virial.xx); + printf("%f | %f\n",force.y*dist_ij->y,ai->virial.yy); + printf("%f | %f\n",force.z*dist_ij->z,ai->virial.zz); +} +#endif + + return 0; +} + +/* tersoff 3 body part */ + +int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,dist_ik,dist_jk; + t_3dvec temp1,temp2; + t_3dvec *dzeta; + double R,S,S2,s_r; + double B,mu; + double d_ij,d_ik,d_jk,d_ij2,d_ik2,d_jk2; + double rr,dd; + double f_c,df_c; + double f_c_ik,df_c_ik,arg; + double f_c_jk; + double n,c,d,h; + double c2,d2,c2d2; + double cos_theta,d_costheta1,d_costheta2; + double h_cos,d2_h_cos2; + double frac,g,zeta,chi; + double tmp; + int brand; + + params=moldyn->pot3b_params; + exchange=&(params->exchange); + + if(!(exchange->run3bp)) + return 0; + + /* + * calc of 3bp contribution of V_ij and dV_ij/ji/jk & + * 2bp contribution of dV_jk + * + * for Vij and dV_ij we still need: + * - b_ij, db_ij (zeta_ij) + * - f_c_ik, df_c_ik, constants_i, cos_theta_ijk, d_costheta_ijk + * + * for dV_ji we still need: + * - b_ji, db_ji (zeta_ji) + * - f_c_jk, d_c_jk, constants_j, cos_theta_jik, d_costheta_jik + * + * for dV_jk we need: + * - f_c_jk + * - f_a_jk + * - db_jk (zeta_jk) + * - f_c_ji, df_c_ji, constants_j, cos_theta_jki, d_costheta_jki + * + */ + + /* + * get exchange data + */ + + /* dist_ij, d_ij - this is < S_ij ! */ + dist_ij=exchange->dist_ij; + d_ij=exchange->d_ij; + d_ij2=exchange->d_ij2; + + /* f_c_ij, df_c_ij (same for ji) */ + f_c=exchange->f_c; + df_c=exchange->df_c; + + /* + * calculate unknown values now ... + */ + + /* V_ij and dV_ij stuff (in b_ij there is f_c_ik) */ + + /* dist_ik, d_ik */ + v3_sub(&dist_ik,&(ak->r),&(ai->r)); + if(bc) check_per_bound(moldyn,&dist_ik); + d_ik2=v3_absolute_square(&dist_ik); + + /* ik constants */ + brand=ai->brand; + if(brand==ak->brand) { + R=params->R[brand]; + S=params->S[brand]; + S2=params->S2[brand]; + } + else { + R=params->Rmixed; + S=params->Smixed; + S2=params->S2mixed; + } + + /* zeta_ij/dzeta_ij contribution only for d_ik < S */ + if(d_ik2n_i); + c=*(exchange->c_i); + d=*(exchange->d_i); + h=*(exchange->h_i); + c2=exchange->ci2; + d2=exchange->di2; + c2d2=exchange->ci2di2; + + /* cosine of theta_ijk by scalaproduct */ + rr=v3_scalar_product(&dist_ij,&dist_ik); + dd=d_ij*d_ik; + cos_theta=rr/dd; + + /* d_costheta */ + tmp=1.0/dd; + d_costheta1=cos_theta/d_ij2-tmp; + d_costheta2=cos_theta/d_ik2-tmp; + + /* some usefull values */ + h_cos=(h-cos_theta); + d2_h_cos2=d2+(h_cos*h_cos); + frac=c2/(d2_h_cos2); + + /* g(cos_theta) */ + g=1.0+c2d2-frac; + + /* d_costheta_ij and dg(cos_theta) - needed in any case! */ + v3_scale(&temp1,&dist_ij,d_costheta1); + v3_scale(&temp2,&dist_ik,d_costheta2); + v3_add(&temp1,&temp1,&temp2); + v3_scale(&temp1,&temp1,-2.0*frac*h_cos/d2_h_cos2); /* dg */ + + /* f_c_ik & df_c_ik + {d,}zeta contribution */ + dzeta=&(exchange->dzeta_ij); + if(d_ik f_c_ik=1.0; + // => df_c_ik=0.0; of course we do not set this! + + /* zeta_ij */ + exchange->zeta_ij+=g; + + /* dzeta_ij */ + v3_add(dzeta,dzeta,&temp1); + } + else { + /* {d,}f_c_ik */ + s_r=S-R; + arg=M_PI*(d_ik-R)/s_r; + f_c_ik=0.5+0.5*cos(arg); + df_c_ik=0.5*sin(arg)*(M_PI/(s_r*d_ik)); + + /* zeta_ij */ + exchange->zeta_ij+=f_c_ik*g; + + /* dzeta_ij */ + v3_scale(&temp1,&temp1,f_c_ik); + v3_scale(&temp2,&dist_ik,g*df_c_ik); + v3_add(&temp1,&temp1,&temp2); + v3_add(dzeta,dzeta,&temp1); } } + /* dV_ji stuff (in b_ji there is f_c_jk) + dV_jk stuff! */ + + /* dist_jk, d_jk */ + v3_sub(&dist_jk,&(ak->r),&(aj->r)); + if(bc) check_per_bound(moldyn,&dist_jk); + d_jk2=v3_absolute_square(&dist_jk); + + /* jk constants */ + brand=aj->brand; + if(brand==ak->brand) { + R=params->R[brand]; + S=params->S[brand]; + S2=params->S2[brand]; + B=params->B[brand]; + mu=params->mu[brand]; + chi=1.0; + } + else { + R=params->Rmixed; + S=params->Smixed; + S2=params->S2mixed; + B=params->Bmixed; + mu=params->mu_m; + chi=params->chi; + } + + /* zeta_ji/dzeta_ji contribution only for d_jk < S_jk */ + if(d_jk2n_j); + c=*(exchange->c_j); + d=*(exchange->d_j); + h=*(exchange->h_j); + c2=exchange->cj2; + d2=exchange->dj2; + c2d2=exchange->cj2dj2; + + /* cosine of theta_jik by scalaproduct */ + rr=-v3_scalar_product(&dist_ij,&dist_jk); /* -1, as ij -> ji */ + dd=d_ij*d_jk; + cos_theta=rr/dd; + + /* d_costheta */ + d_costheta1=1.0/dd; + d_costheta2=cos_theta/d_ij2; + + /* some usefull values */ + h_cos=(h-cos_theta); + d2_h_cos2=d2+(h_cos*h_cos); + frac=c2/(d2_h_cos2); + + /* g(cos_theta) */ + g=1.0+c2d2-frac; + + /* d_costheta_jik and dg(cos_theta) - needed in any case! */ + v3_scale(&temp1,&dist_jk,d_costheta1); + v3_scale(&temp2,&dist_ij,-d_costheta2); /* ji -> ij => -1 */ + //v3_add(&temp1,&temp1,&temp2); + v3_sub(&temp1,&temp1,&temp2); /* there is a minus! */ + v3_scale(&temp1,&temp1,-2.0*frac*h_cos/d2_h_cos2); /* dg */ + + /* store dg in temp2 and use it for dVjk later */ + v3_copy(&temp2,&temp1); + + /* f_c_jk + {d,}zeta contribution (df_c_jk = 0) */ + dzeta=&(exchange->dzeta_ji); + if(d_jkzeta_ji+=g; + + /* dzeta_ji */ + v3_add(dzeta,dzeta,&temp1); + } + else { + /* f_c_jk */ + s_r=S-R; + arg=M_PI*(d_jk-R)/s_r; + f_c_jk=0.5+0.5*cos(arg); + + /* zeta_ji */ + exchange->zeta_ji+=f_c_jk*g; + + /* dzeta_ji */ + v3_scale(&temp1,&temp1,f_c_jk); + v3_add(dzeta,dzeta,&temp1); + } + + /* dV_jk stuff | add force contribution on atom i immediately */ + if(exchange->d_ij_between_rs) { + zeta=f_c*g; + v3_scale(&temp1,&temp2,f_c); + v3_scale(&temp2,&dist_ij,df_c*g); + v3_add(&temp2,&temp2,&temp1); /* -> dzeta_jk in temp2 */ + } + else { + zeta=g; + // dzeta_jk is simply dg, which is stored in temp2 + } + /* betajnj * zeta_jk ^ nj-1 */ + tmp=exchange->betajnj*pow(zeta,(n-1.0)); + tmp=-chi/2.0*pow((1+tmp*zeta),(-1.0/(2.0*n)-1))*tmp; + v3_scale(&temp2,&temp2,tmp*B*exp(-mu*d_jk)*f_c_jk*0.5); + v3_add(&(ai->f),&(ai->f),&temp2); /* -1 skipped in f_a calc ^ */ + /* scaled with 0.5 ^ */ + + /* virial */ + ai->virial.xx-=temp2.x*dist_jk.x; + ai->virial.yy-=temp2.y*dist_jk.y; + ai->virial.zz-=temp2.z*dist_jk.z; + ai->virial.xy-=temp2.x*dist_jk.y; + ai->virial.xz-=temp2.x*dist_jk.z; + ai->virial.yz-=temp2.y*dist_jk.z; + +#ifdef DEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVjk (3bp) contrib:\n"); + printf("%f | %f\n",temp2.x,ai->f.x); + printf("%f | %f\n",temp2.y,ai->f.y); + printf("%f | %f\n",temp2.z,ai->f.z); +} +#endif +#ifdef VDEBUG +if(ai==&(moldyn->atom[0])) { + printf("dVjk (3bp) contrib:\n"); + printf("%f | %f\n",temp2.x*dist_jk.x,ai->virial.xx); + printf("%f | %f\n",temp2.y*dist_jk.y,ai->virial.yy); + printf("%f | %f\n",temp2.z*dist_jk.z,ai->virial.zz); +} +#endif + + } + return 0; } + +/* + * debugging / critical check functions + */ + +int moldyn_bc_check(t_moldyn *moldyn) { + + t_atom *atom; + t_3dvec *dim; + int i; + double x; + u8 byte; + int j,k; + + atom=moldyn->atom; + dim=&(moldyn->dim); + x=dim->x/2; + + for(i=0;icount;i++) { + if(atom[i].r.x>=dim->x/2||-atom[i].r.x>dim->x/2) { + printf("FATAL: atom %d: x: %.20f (%.20f)\n", + i,atom[i].r.x,dim->x/2); + printf("diagnostic:\n"); + printf("-----------\natom.r.x:\n"); + for(j=0;j<8;j++) { + memcpy(&byte,(u8 *)(&(atom[i].r.x))+j,1); + for(k=0;k<8;k++) + printf("%d%c", + ((byte)&(1<=dim->y/2||-atom[i].r.y>dim->y/2) + printf("FATAL: atom %d: y: %.20f (%.20f)\n", + i,atom[i].r.y,dim->y/2); + if(atom[i].r.z>=dim->z/2||-atom[i].r.z>dim->z/2) + printf("FATAL: atom %d: z: %.20f (%.20f)\n", + i,atom[i].r.z,dim->z/2); + } + + return 0; +}