X-Git-Url: https://www.hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=de7bbbf2a99df465459ee11ac6993c0b6fea58e1;hb=d0b3c58c84496f5a031f6121f54e2a3d00075b63;hp=8b8024257678eae44c2b1815ff2674e4c56126fc;hpb=2c65282d51589acb2f08631c7a7920cb70a46a5c;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 8b80242..de7bbbf 100644 --- a/moldyn.c +++ b/moldyn.c @@ -23,212 +23,164 @@ #include "visual/visual.h" #include "list/list.h" -int moldyn_usage(char **argv) { - - printf("\n%s usage:\n\n",argv[0]); - printf("--- general options ---\n"); - printf("-E (log total energy)\n"); - printf("-M (log total momentum)\n"); - printf("-D (dump total information)\n"); - printf("-S (single save file)\n"); - printf("-V (rasmol file)\n"); - printf("--- physics options ---\n"); - printf("-T [K] (%f)\n",MOLDYN_TEMP); - printf("-t [s] (%.15f)\n",MOLDYN_TAU); - printf("-C [m] (%.15f)\n",MOLDYN_CUTOFF); - printf("-R (%d)\n",MOLDYN_RUNS); - printf(" -- integration algo --\n"); - printf(" -I (%d)\n",MOLDYN_INTEGRATE_DEFAULT); - printf(" 0: velocity verlet\n"); - printf(" -- potential --\n"); - printf(" -P \n"); - printf(" 0: harmonic oscillator\n"); - printf(" param1: spring constant\n"); - printf(" param2: equilibrium distance\n"); - printf(" 1: lennard jones\n"); - printf(" param1: epsilon\n"); - printf(" param2: sigma\n"); - printf("\n"); + +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { + + //int ret; + + //ret=moldyn_parse_argv(moldyn,argc,argv); + //if(ret<0) return ret; + + memset(moldyn,0,sizeof(t_moldyn)); + + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; return 0; } -int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { +int moldyn_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] shutdown\n"); + moldyn_log_shutdown(moldyn); + link_cell_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); - int i; + return 0; +} - memset(moldyn,0,sizeof(t_moldyn)); +int set_int_alg(t_moldyn *moldyn,u8 algo) { - /* default values */ - moldyn->t=MOLDYN_TEMP; - moldyn->tau=MOLDYN_TAU; - moldyn->time_steps=MOLDYN_RUNS; - moldyn->integrate=velocity_verlet; - - /* parse argv */ - for(i=1;iewrite=atoi(argv[++i]); - strncpy(moldyn->efb,argv[++i],64); - break; - case 'M': - moldyn->mwrite=atoi(argv[++i]); - strncpy(moldyn->mfb,argv[++i],64); - break; - case 'S': - moldyn->swrite=atoi(argv[++i]); - strncpy(moldyn->sfb,argv[++i],64); - break; - case 'V': - moldyn->vwrite=atoi(argv[++i]); - strncpy(moldyn->vfb,argv[++i],64); - break; - case 'T': - moldyn->t=atof(argv[++i]); - break; - case 't': - moldyn->tau=atof(argv[++i]); - break; - case 'C': - moldyn->cutoff=atof(argv[++i]); - break; - case 'R': - moldyn->time_steps=atoi(argv[++i]); - break; - case 'I': - /* integration algorithm */ - switch(atoi(argv[++i])) { + switch(algo) { case MOLDYN_INTEGRATE_VERLET: moldyn->integrate=velocity_verlet; break; default: - printf("unknown integration algo %s\n",argv[i]); - moldyn_usage(argv); + printf("unknown integration algorithm: %02x\n",algo); return -1; } - case 'P': - /* potential + params */ - switch(atoi(argv[++i])) { - case MOLDYN_POTENTIAL_HO: - hop.spring_constant=atof(argv[++i]); - hop.equilibrium_distance=atof(argv[++i]); - moldyn->pot_params=malloc(sizeof(t_ho_params)); - memcpy(moldyn->pot_params,&hop,sizeof(t_ho_params)); - moldyn->potential_force_function=harmonic_oscillator; - break; - case MOLDYN_POTENTIAL_LJ: - e=atof(argv[++i]); - s=atof(argv[++i]); - ljp.epsilon4=4*e; - ljp.sigma6=s*s*s*s*s*s; - ljp.sigma12=ljp.sigma6*ljp.sigma6; - moldyn->pot_params=malloc(sizeof(t_lj_params)); - memcpy(moldyn->pot_params,&ljp,sizeof(t_lj_params)); - moldyn->potential_force_function=lennard_jones; - break; - default: - printf("unknown potential %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } + return 0; +} - default: - printf("unknown option %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } - } else { - moldyn_usage(argv); - return -1; - } - } +int set_cutoff(t_moldyn *moldyn,double cutoff) { + + moldyn->cutoff=cutoff; return 0; } -int moldyn_log_init(t_moldyn *moldyn) { +int set_temperature(t_moldyn *moldyn,double t) { + + moldyn->t=t; - moldyn->lvstat=0; - t_visual *vis; + return 0; +} - vis=&(moldyn->vis); +int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { - if(moldyn->ewrite) { - moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->efd<0) { - perror("[moldyn] efd open"); - return moldyn->efd; - } - dprintf(moldyn->efd,"# moldyn total energy logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_E; - } + moldyn->dim.x=x; + moldyn->dim.y=y; + moldyn->dim.z=z; - if(moldyn->mwrite) { - moldyn->mfd=open(moldyn->mfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->mfd<0) { - perror("[moldyn] mfd open"); - return moldyn->mfd; - } - dprintf(moldyn->mfd,"# moldyn total momentum logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_M; + if(visualize) { + moldyn->vis.dim.x=x; + moldyn->vis.dim.y=y; + moldyn->vis.dim.z=z; } - if(moldyn->swrite) - moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; + return 0; +} - if((moldyn->vwrite)&&(vis)) { - moldyn->visual=vis; - visual_init(vis,moldyn->vfb); - moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL; - } +int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { - moldyn->lvstat|=MOLDYN_LVSTAT_INITIALIZED; + if(x) + moldyn->status|=MOLDYN_STAT_PBX; + + if(y) + moldyn->status|=MOLDYN_STAT_PBY; + + if(z) + moldyn->status|=MOLDYN_STAT_PBZ; return 0; } -int moldyn_log_shutdown(t_moldyn *moldyn) { +int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { - if(moldyn->efd) close(moldyn->efd); - if(moldyn->mfd) close(moldyn->efd); - if(moldyn->dfd) close(moldyn->efd); - if(moldyn->visual) visual_tini(moldyn->visual); + moldyn->func1b=func; + moldyn->pot1b_params=params; return 0; } -int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { +int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { - int ret; + moldyn->func2b=func; + moldyn->pot2b_params=params; - ret=moldyn_parse_argv(moldyn,argc,argv); - if(ret<0) return ret; + return 0; +} - ret=moldyn_log_init(moldyn); - if(ret<0) return ret; +int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { - rand_init(&(moldyn->random),NULL,1); - moldyn->random.status|=RAND_STAT_VERBOSE; + moldyn->func3b=func; + moldyn->pot3b_params=params; - moldyn->status=0; + return 0; +} + +int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) { + + switch(type) { + case LOG_TOTAL_ENERGY: + moldyn->ewrite=timer; + moldyn->efd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->efd<0) { + perror("[moldyn] efd open"); + return moldyn->efd; + } + dprintf(moldyn->efd,"# total energy log file\n"); + break; + case LOG_TOTAL_MOMENTUM: + moldyn->mwrite=timer; + moldyn->mfd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->mfd<0) { + perror("[moldyn] mfd open"); + return moldyn->mfd; + } + dprintf(moldyn->efd,"# total momentum log file\n"); + break; + case SAVE_STEP: + moldyn->swrite=timer; + strncpy(moldyn->sfb,fb,63); + break; + case VISUAL_STEP: + moldyn->vwrite=timer; + strncpy(moldyn->vfb,fb,63); + visual_init(&(moldyn->vis),fb); + break; + default: + printf("unknown log mechanism: %02x\n",type); + return -1; + } return 0; } -int moldyn_shutdown(t_moldyn *moldyn) { +int moldyn_log_shutdown(t_moldyn *moldyn) { - moldyn_log_shutdown(moldyn); - rand_close(&(moldyn->random)); - free(moldyn->atom); + printf("[moldyn] log shutdown\n"); + if(moldyn->efd) close(moldyn->efd); + if(moldyn->mfd) close(moldyn->mfd); + if(&(moldyn->vis)) visual_tini(&(moldyn->vis)); return 0; } -int create_lattice(u8 type,int element,double mass,double lc, - int a,int b,int c,t_atom **atom) { +int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, + u8 attr,u8 bnum,int a,int b,int c) { int count; int ret; @@ -237,10 +189,11 @@ int create_lattice(u8 type,int element,double mass,double lc, count=a*b*c; if(type==FCC) count*=4; + if(type==DIAMOND) count*=8; - *atom=malloc(count*sizeof(t_atom)); - if(*atom==NULL) { + moldyn->atom=malloc(count*sizeof(t_atom)); + if(moldyn->atom==NULL) { perror("malloc (atoms)"); return -1; } @@ -249,10 +202,10 @@ int create_lattice(u8 type,int element,double mass,double lc, switch(type) { case FCC: - ret=fcc_init(a,b,c,lc,*atom,&origin); + ret=fcc_init(a,b,c,lc,moldyn->atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,*atom,&origin); + ret=diamond_init(a,b,c,lc,moldyn->atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -267,18 +220,50 @@ int create_lattice(u8 type,int element,double mass,double lc, return -1; } + moldyn->count=count; + while(count) { - (*atom)[count-1].element=element; - (*atom)[count-1].mass=mass; + moldyn->atom[count-1].element=element; + moldyn->atom[count-1].mass=mass; + moldyn->atom[count-1].attr=attr; + moldyn->atom[count-1].bnum=bnum; count-=1; } return ret; } -int destroy_lattice(t_atom *atom) { +int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, + t_3dvec *r,t_3dvec *v) { + + t_atom *atom; + void *ptr; + int count; + + atom=moldyn->atom; + count=++(moldyn->count); + + ptr=realloc(atom,count*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (add atom)"); + return -1; + } + moldyn->atom=ptr; + + atom=moldyn->atom; + atom[count-1].r=*r; + atom[count-1].v=*v; + atom[count-1].element=element; + atom[count-1].mass=mass; + atom[count-1].bnum=bnum; + atom[count-1].attr=attr; + + return 0; +} + +int destroy_atoms(t_moldyn *moldyn) { - if(atom) free(atom); + if(moldyn->atom) free(moldyn->atom); return 0; } @@ -342,6 +327,12 @@ int scale_velocity(t_moldyn *moldyn) { /* * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ + + if(moldyn->t==0.0) { + printf("[moldyn] no velocity scaling for T = 0 K\n"); + return -1; + } + e=0.0; for(i=0;icount;i++) e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); @@ -352,18 +343,18 @@ int scale_velocity(t_moldyn *moldyn) { return 0; } -double get_e_kin(t_atom *atom,int count) { +double get_e_kin(t_moldyn *moldyn) { int i; - double e; + t_atom *atom; - e=0.0; + atom=moldyn->atom; + moldyn->ekin=0.0; - for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - return e; + return moldyn->ekin; } double get_e_pot(t_moldyn *moldyn) { @@ -371,23 +362,26 @@ double get_e_pot(t_moldyn *moldyn) { return moldyn->energy; } -double get_total_energy(t_moldyn *moldyn) { +double update_e_kin(t_moldyn *moldyn) { - double e; + return(get_e_kin(moldyn)); +} - e=get_e_kin(moldyn->atom,moldyn->count); - e+=get_e_pot(moldyn); +double get_total_energy(t_moldyn *moldyn) { - return e; + return(moldyn->ekin+moldyn->energy); } -t_3dvec get_total_p(t_atom *atom, int count) { +t_3dvec get_total_p(t_moldyn *moldyn) { t_3dvec p,p_total; int i; + t_atom *atom; + + atom=moldyn->atom; v3_zero(&p_total); - for(i=0;icount;i++) { v3_scale(&p,&(atom[i].v),atom[i].mass); v3_add(&p_total,&p_total,&p); } @@ -395,15 +389,19 @@ t_3dvec get_total_p(t_atom *atom, int count) { return p_total; } -double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) { +double estimate_time_step(t_moldyn *moldyn,double nn_dist) { double tau; - tau=0.05*nn_dist/(sqrt(3.0*K_BOLTZMANN*t/moldyn->atom[0].mass)); - tau*=1.0E-9; - if(tautau) - printf("[moldyn] warning: time step (%f > %.15f)\n", - moldyn->tau,tau); + /* nn_dist is the nearest neighbour distance */ + + if(moldyn->t==5.0) { + printf("[moldyn] i do not estimate timesteps below %f K!\n", + MOLDYN_CRITICAL_EST_TEMP); + return 23.42; + } + + tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t); return tau; } @@ -418,11 +416,11 @@ int link_cell_init(t_moldyn *moldyn) { t_linkcell *lc; int i; + int fd; - lc=&(moldyn->lc); + fd=open("/dev/null",O_WRONLY); - /* list log fd */ - lc->listfd=open("/dev/null",O_WRONLY); + lc=&(moldyn->lc); /* partitioning the md cell */ lc->nx=moldyn->dim.x/moldyn->cutoff; @@ -435,11 +433,11 @@ int link_cell_init(t_moldyn *moldyn) { lc->cells=lc->nx*lc->ny*lc->nz; lc->subcell=malloc(lc->cells*sizeof(t_list)); - printf("initializing linked cells (%d)\n",lc->cells); + printf("[moldyn] initializing linked cells (%d)\n",lc->cells); for(i=0;icells;i++) //list_init(&(lc->subcell[i]),1); - list_init(&(lc->subcell[i])); + list_init(&(lc->subcell[i]),fd); link_cell_update(moldyn); @@ -463,7 +461,7 @@ int link_cell_update(t_moldyn *moldyn) { for(i=0;icells;i++) list_destroy(&(moldyn->lc.subcell[i])); - for(count=0;countcount;count++) { + for(count=0;countcount;count++) { i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; @@ -542,11 +540,45 @@ int link_cell_shutdown(t_moldyn *moldyn) { for(i=0;inx*lc->ny*lc->nz;i++) list_shutdown(&(moldyn->lc.subcell[i])); - if(lc->listfd) close(lc->listfd); + return 0; +} + +int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { + + int count; + void *ptr; + t_moldyn_schedule *schedule; + + schedule=&(moldyn->schedule); + count=++(schedule->content_count); + + ptr=realloc(moldyn->schedule.runs,count*sizeof(int)); + if(!ptr) { + perror("[moldyn] realloc (runs)"); + return -1; + } + moldyn->schedule.runs=ptr; + moldyn->schedule.runs[count-1]=runs; + + ptr=realloc(schedule->tau,count*sizeof(double)); + if(!ptr) { + perror("[moldyn] realloc (tau)"); + return -1; + } + moldyn->schedule.tau=ptr; + moldyn->schedule.tau[count-1]=tau; return 0; } +int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { + + moldyn->schedule.hook=hook; + moldyn->schedule.hook_params=hook_params; + + return 0; +} + /* * * 'integration of newtons equation' - algorithms @@ -558,12 +590,17 @@ int link_cell_shutdown(t_moldyn *moldyn) { int moldyn_integrate(t_moldyn *moldyn) { int i,sched; - unsigned int e,m,s,d,v; + unsigned int e,m,s,v; t_3dvec p; + t_moldyn_schedule *schedule; + t_atom *atom; int fd; char fb[128]; + schedule=&(moldyn->schedule); + atom=moldyn->atom; + /* initialize linked cell method */ link_cell_init(moldyn); @@ -571,44 +608,49 @@ int moldyn_integrate(t_moldyn *moldyn) { e=moldyn->ewrite; m=moldyn->mwrite; s=moldyn->swrite; - d=moldyn->dwrite; v=moldyn->vwrite; - if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) { - printf("[moldyn] warning, lv system not initialized\n"); - return -1; - } - /* sqaure of some variables */ moldyn->tau_square=moldyn->tau*moldyn->tau; moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; /* calculate initial forces */ - moldyn->potential_force_function(moldyn); + potential_force_calc(moldyn); + + /* zero absolute time */ + moldyn->time=0.0; for(sched=0;schedschedule.content_count;sched++) { - moldyn->tau=; - moldyn->tau_square=; - // hier weiter ... + /* setting amount of runs and finite time step size */ + moldyn->tau=schedule->tau[sched]; + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->time_steps=schedule->runs[sched]; + + /* integration according to schedule */ for(i=0;itime_steps;i++) { /* integration step */ moldyn->integrate(moldyn); + /* increase absolute time */ + moldyn->time+=moldyn->tau; + /* check for log & visualization */ if(e) { if(!(i%e)) dprintf(moldyn->efd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f %.45f %.45f\n", + moldyn->time,update_e_kin(moldyn), + moldyn->energy, get_total_energy(moldyn)); } if(m) { if(!(i%m)) { - p=get_total_p(moldyn->atom,moldyn->count); + p=get_total_p(moldyn); dprintf(moldyn->mfd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f\n",moldyn->time, v3_norm(&p)); } } @@ -628,12 +670,19 @@ int moldyn_integrate(t_moldyn *moldyn) { } if(v) { if(!(i%v)) { - visual_atoms(moldyn->visual,i*moldyn->tau, + visual_atoms(&(moldyn->vis),moldyn->time, moldyn->atom,moldyn->count); - printf("\rsteps: %d",i); + printf("\rsched: %d, steps: %d",sched,i); fflush(stdout); } } + + } + + /* check for hooks */ + if(schedule->hook) + schedule->hook(moldyn,schedule->hook_params); + } return 0; @@ -659,7 +708,7 @@ int velocity_verlet(t_moldyn *moldyn) { v3_add(&(atom[i].r),&(atom[i].r),&delta); v3_scale(&delta,&(atom[i].f),0.5*tau_square/atom[i].mass); v3_add(&(atom[i].r),&(atom[i].r),&delta); - v3_per_bound(&(atom[i].r),&(moldyn->dim)); + check_per_bound(moldyn,&(atom[i].r)); /* velocities */ v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass); @@ -667,15 +716,11 @@ int velocity_verlet(t_moldyn *moldyn) { } /* neighbour list update */ -printf("list update ...\n"); link_cell_update(moldyn); -printf("done\n"); /* forces depending on chosen potential */ -printf("calc potential/force ...\n"); potential_force_calc(moldyn); //moldyn->potential_force_function(moldyn); -printf("done\n"); for(i=0;icount; @@ -714,17 +758,18 @@ int potential_force_calc(t_moldyn *moldyn) { moldyn->energy=0.0; for(i=0;ipf_func1b(moldyn,&(atom[i])); + moldyn->func1b(moldyn,&(atom[i])); /* 2 body pair potential/force */ if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { - + link_cell_neighbour_index(moldyn, (atom[i].r.x+moldyn->dim.x/2)/lc->x, (atom[i].r.y+moldyn->dim.y/2)/lc->y, @@ -752,10 +797,10 @@ int potential_force_calc(t_moldyn *moldyn) { if((btom->attr&ATOM_ATTR_2BP)& (atom[i].attr&ATOM_ATTR_2BP)) - moldyn->pf_func2b(moldyn, - &(atom[i]), - btom, - bc); + moldyn->func2b(moldyn, + &(atom[i]), + btom, + bc); /* 3 body potential/force */ @@ -792,10 +837,12 @@ int potential_force_calc(t_moldyn *moldyn) { if(ktom==&(atom[i])) continue; - moldyn->pf_func3b(moldyn,&(atom[i]),btom,ktom,bck); + moldyn->func3b(moldyn,&(atom[i]),btom,ktom,bck); } while(list_next(thisk)!=\ L_NO_NEXT_ELEMENT); + + } } while(list_next(this)!=L_NO_NEXT_ELEMENT); } @@ -812,20 +859,26 @@ int potential_force_calc(t_moldyn *moldyn) { int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { double x,y,z; + t_3dvec *dim; + + dim=&(moldyn->dim); x=0.5*dim->x; y=0.5*dim->y; z=0.5*dim->z; - if(moldyn->MOLDYN_ATTR_PBX) + if(moldyn->status&MOLDYN_STAT_PBX) { if(a->x>=x) a->x-=dim->x; else if(-a->x>x) a->x+=dim->x; - if(moldyn->MOLDYN_ATTR_PBY) + } + if(moldyn->status&MOLDYN_STAT_PBY) { if(a->y>=y) a->y-=dim->y; else if(-a->y>y) a->y+=dim->y; - if(moldyn->MOLDYN_ATTR_PBZ) + } + if(moldyn->status&MOLDYN_STAT_PBZ) { if(a->z>=z) a->z-=dim->z; else if(-a->z>z) a->z+=dim->z; + } return 0; } @@ -837,7 +890,7 @@ int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { /* harmonic oscillator potential and force */ -int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc)) { +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_ho_params *params; t_3dvec force,distance; @@ -848,9 +901,8 @@ int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc)) { sc=params->spring_constant; equi_dist=params->equilibrium_distance; - v3_sub(&distance,&(ai->r),&(aj->r); + v3_sub(&distance,&(ai->r),&(aj->r)); - v3_per_bound(&distance,&(moldyn->dim)); if(bc) check_per_bound(moldyn,&distance); d=v3_norm(&distance); if(d<=moldyn->cutoff) { @@ -869,10 +921,10 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_lj_params *params; t_3dvec force,distance; - double d,h1,h2,u; + double d,h1,h2; double eps,sig6,sig12; - params=moldyn->pot_params; + params=moldyn->pot2b_params; eps=params->epsilon4; sig6=params->sigma6; sig12=params->sigma12; @@ -894,7 +946,7 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { d=+h1-h2; d*=eps; v3_scale(&force,&distance,d); - v3_add(&(ai->f),&(aj->f),&force); + v3_add(&(ai->f),&(ai->f),&force); } return 0; @@ -939,12 +991,17 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_tersoff_mult_params *params; t_tersoff_exchange *exchange; - t_3dvec dist_ij; + t_3dvec dist_ij,force; double d_ij; - double A,B,R,S,lambda; + double A,B,R,S,lambda,mu; + double f_r,df_r; + double f_c,df_c; int num; + double s_r; + double arg; + double scale; - params=moldyn->pot_params; + params=moldyn->pot2b_params; num=ai->bnum; exchange=&(params->exchange); @@ -971,7 +1028,8 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { lambda=params->lambda[num]; /* more constants depending of atoms i and j, needed in 3bp */ params->exchange.B=&(params->B[num]); - params->exchange.mu=params->mu[num]; + params->exchange.mu=&(params->mu[num]); + mu=params->mu[num]; params->exchange.chi=1.0; } else { @@ -982,6 +1040,7 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { /* more constants depending of atoms i and j, needed in 3bp */ params->exchange.B=&(params->Bmixed); params->exchange.mu=&(params->mu_m); + mu=params->mu_m; params->exchange.chi=params->chi; } @@ -993,7 +1052,7 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { if(d_ij>S) return 0; - f_r=A*exp(-lamda*d_ij); + f_r=A*exp(-lambda*d_ij); df_r=-lambda*f_r/d_ij; /* f_a, df_a calc + save for 3bp use */ @@ -1008,9 +1067,9 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { } else { s_r=S-R; - arg=PI*(d_ij-R)/s_r; + arg=M_PI*(d_ij-R)/s_r; f_c=0.5+0.5*cos(arg); - df_c=-0.5*sin(arg)*(PI/(s_r*d_ij)); + df_c=-0.5*sin(arg)*(M_PI/(s_r*d_ij)); scale=df_c*f_r+df_r*f_c; v3_scale(&force,&dist_ij,scale); } @@ -1039,15 +1098,24 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { t_3dvec dist_ij,dist_ik,dist_jk; t_3dvec temp,force; double R,S,s_r; - double d_ij,d_ik,d_jk; + double d_ij,d_ij2,d_ik,d_jk; double f_c,df_c,b_ij,f_a,df_a; - double n,c,d,h,neta,betan,betan_1; + double f_c_ik,df_c_ik,arg; + double scale; + double chi; + double n,c,d,h,beta,betan; + double c2,d2,c2d2; + double numer,denom; double theta,cos_theta,sin_theta; + double d_theta,d_theta1,d_theta2; + double h_cos,h_cos2,d2_h_cos2; + double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n; + double bracket3,bracket3_pow_1,bracket3_pow; int num; - params=moldyn->pot_params; + params=moldyn->pot3b_params; num=ai->bnum; - exchange=params->exchange; + exchange=&(params->exchange); if(!(exchange->run3bp)) return 0; @@ -1077,7 +1145,7 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { */ - v3_sub(&dist_ik,&(aj->i),&(ak->r)); + v3_sub(&dist_ik,&(ai->r),&(ak->r)); if(bc) check_per_bound(moldyn,&dist_ik); d_ik=v3_norm(&dist_ik); @@ -1102,9 +1170,9 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { } else { s_r=S-R; - arg=PI*(d_ik-R)/s_r; + arg=M_PI*(d_ik-R)/s_r; f_c_ik=0.5+0.5*cos(arg); - df_c_ik=-0.5*sin(arg)*(PI/(s_r*d_ik)); + df_c_ik=-0.5*sin(arg)*(M_PI/(s_r*d_ik)); } v3_sub(&dist_jk,&(aj->r),&(ak->r)); @@ -1125,7 +1193,7 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { denom=2*d_ij*d_ik; cos_theta=numer/denom; sin_theta=sqrt(1.0-(cos_theta*cos_theta)); - theta=arccos(cos_theta); + theta=acos(cos_theta); d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom); d_theta1=2*denom-numer*2*d_ik/d_ij; d_theta2=2*denom-numer*2*d_ij/d_ik; @@ -1150,12 +1218,12 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { b_ij=chi*bracket3_pow; /* derivation of theta */ - v3_scale(&force,&dist_ij,d1_theta); + v3_scale(&force,&dist_ij,d_theta1); v3_scale(&temp,&dist_ik,d_theta2); v3_add(&force,&force,&temp); /* part 1 of derivation of b_ij */ - v3_scale(&force,sin_theta*2*h_cos*f_c_ik*frac1); + v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1); /* part 2 of derivation of b_ij */ v3_scale(&temp,&dist_ik,df_c_ik*bracket1);