X-Git-Url: https://www.hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=af0132dff157564f46f593c3280700b045a1810c;hb=a9fbc66448c52bc4138176739b33d17ba86b7eae;hp=fe54330f002f414d345295ff73dd4d1e6b6b557d;hpb=1097ea2efb575855edd332c28a9cd8f807cd0716;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index fe54330..af0132d 100644 --- a/moldyn.c +++ b/moldyn.c @@ -23,206 +23,174 @@ #include "visual/visual.h" #include "list/list.h" -int moldyn_usage(char **argv) { - - printf("\n%s usage:\n\n",argv[0]); - printf("--- general options ---\n"); - printf("-E (log total energy)\n"); - printf("-M (log total momentum)\n"); - printf("-D (dump total information)\n"); - printf("-S (single save file)\n"); - printf("-V (rasmol file)\n"); - printf("--- physics options ---\n"); - printf("-T [K] (%f)\n",MOLDYN_TEMP); - printf("-t [s] (%.15f)\n",MOLDYN_TAU); - printf("-C [m] (%.15f)\n",MOLDYN_CUTOFF); - printf("-R (%d)\n",MOLDYN_RUNS); - printf(" -- integration algo --\n"); - printf(" -I (%d)\n",MOLDYN_INTEGRATE_DEFAULT); - printf(" 0: velocity verlet\n"); - printf(" -- potential --\n"); - printf(" -P \n"); - printf(" 0: harmonic oscillator\n"); - printf(" param1: spring constant\n"); - printf(" param2: equilibrium distance\n"); - printf(" 1: lennard jones\n"); - printf(" param1: epsilon\n"); - printf(" param2: sigma\n"); - printf("\n"); + +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { + + //int ret; + + //ret=moldyn_parse_argv(moldyn,argc,argv); + //if(ret<0) return ret; + + memset(moldyn,0,sizeof(t_moldyn)); + + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; return 0; } -int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { +int moldyn_shutdown(t_moldyn *moldyn) { - int i; + printf("[moldyn] shutdown\n"); + moldyn_log_shutdown(moldyn); + link_cell_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); - memset(moldyn,0,sizeof(t_moldyn)); + return 0; +} - /* default values */ - moldyn->t=MOLDYN_TEMP; - moldyn->tau=MOLDYN_TAU; - moldyn->time_steps=MOLDYN_RUNS; - moldyn->integrate=velocity_verlet; - - /* parse argv */ - for(i=1;iewrite=atoi(argv[++i]); - strncpy(moldyn->efb,argv[++i],64); - break; - case 'M': - moldyn->mwrite=atoi(argv[++i]); - strncpy(moldyn->mfb,argv[++i],64); - break; - case 'S': - moldyn->swrite=atoi(argv[++i]); - strncpy(moldyn->sfb,argv[++i],64); - break; - case 'V': - moldyn->vwrite=atoi(argv[++i]); - strncpy(moldyn->vfb,argv[++i],64); - break; - case 'T': - moldyn->t=atof(argv[++i]); - break; - case 't': - moldyn->tau=atof(argv[++i]); - break; - case 'C': - moldyn->cutoff=atof(argv[++i]); - break; - case 'R': - moldyn->time_steps=atoi(argv[++i]); - break; - case 'I': - /* integration algorithm */ - switch(atoi(argv[++i])) { +int set_int_alg(t_moldyn *moldyn,u8 algo) { + + switch(algo) { case MOLDYN_INTEGRATE_VERLET: moldyn->integrate=velocity_verlet; break; default: - printf("unknown integration algo %s\n",argv[i]); - moldyn_usage(argv); + printf("unknown integration algorithm: %02x\n",algo); return -1; } - case 'P': - /* potential + params */ - switch(atoi(argv[++i])) { - case MOLDYN_POTENTIAL_HO: - hop.spring_constant=atof(argv[++i]); - hop.equilibrium_distance=atof(argv[++i]); - moldyn->pot_params=malloc(sizeof(t_ho_params)); - memcpy(moldyn->pot_params,&hop,sizeof(t_ho_params)); - moldyn->potential_force_function=harmonic_oscillator; - break; - case MOLDYN_POTENTIAL_LJ: - e=atof(argv[++i]); - s=atof(argv[++i]); - ljp.epsilon4=4*e; - ljp.sigma6=s*s*s*s*s*s; - ljp.sigma12=ljp.sigma6*ljp.sigma6; - moldyn->pot_params=malloc(sizeof(t_lj_params)); - memcpy(moldyn->pot_params,&ljp,sizeof(t_lj_params)); - moldyn->potential_force_function=lennard_jones; - break; - default: - printf("unknown potential %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } + return 0; +} - default: - printf("unknown option %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } - } else { - moldyn_usage(argv); - return -1; - } - } +int set_cutoff(t_moldyn *moldyn,double cutoff) { + + moldyn->cutoff=cutoff; return 0; } -int moldyn_log_init(t_moldyn *moldyn) { +int set_temperature(t_moldyn *moldyn,double t_ref) { - moldyn->lvstat=0; - t_visual *vis; + moldyn->t_ref=t_ref; - vis=&(moldyn->vis); + return 0; +} - if(moldyn->ewrite) { - moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->efd<0) { - perror("[moldyn] efd open"); - return moldyn->efd; - } - dprintf(moldyn->efd,"# moldyn total energy logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_E; - } +int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) { - if(moldyn->mwrite) { - moldyn->mfd=open(moldyn->mfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->mfd<0) { - perror("[moldyn] mfd open"); - return moldyn->mfd; - } - dprintf(moldyn->mfd,"# moldyn total momentum logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_M; - } + moldyn->pt_scale=(ptype|ttype); + moldyn->t_tc=ttc; + moldyn->p_tc=ptc; + + return 0; +} + +int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { - if(moldyn->swrite) - moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; + moldyn->dim.x=x; + moldyn->dim.y=y; + moldyn->dim.z=z; - if((moldyn->vwrite)&&(vis)) { - moldyn->visual=vis; - visual_init(vis,moldyn->vfb); - moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL; + if(visualize) { + moldyn->vis.dim.x=x; + moldyn->vis.dim.y=y; + moldyn->vis.dim.z=z; } - moldyn->lvstat|=MOLDYN_LVSTAT_INITIALIZED; + return 0; +} + +int set_nn_dist(t_moldyn *moldyn,double dist) { + + moldyn->nnd=dist; return 0; } -int moldyn_log_shutdown(t_moldyn *moldyn) { +int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { - if(moldyn->efd) close(moldyn->efd); - if(moldyn->mfd) close(moldyn->efd); - if(moldyn->dfd) close(moldyn->efd); - if(moldyn->visual) visual_tini(moldyn->visual); + if(x) + moldyn->status|=MOLDYN_STAT_PBX; + + if(y) + moldyn->status|=MOLDYN_STAT_PBY; + + if(z) + moldyn->status|=MOLDYN_STAT_PBZ; return 0; } -int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { +int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { - int ret; + moldyn->func1b=func; + moldyn->pot1b_params=params; - ret=moldyn_parse_argv(moldyn,argc,argv); - if(ret<0) return ret; + return 0; +} - ret=moldyn_log_init(moldyn); - if(ret<0) return ret; +int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { - rand_init(&(moldyn->random),NULL,1); - moldyn->random.status|=RAND_STAT_VERBOSE; + moldyn->func2b=func; + moldyn->pot2b_params=params; - moldyn->status=0; + return 0; +} + +int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { + + moldyn->func3b=func; + moldyn->pot3b_params=params; return 0; } -int moldyn_shutdown(t_moldyn *moldyn) { +int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) { - moldyn_log_shutdown(moldyn); - rand_close(&(moldyn->random)); - free(moldyn->atom); + switch(type) { + case LOG_TOTAL_ENERGY: + moldyn->ewrite=timer; + moldyn->efd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->efd<0) { + perror("[moldyn] efd open"); + return moldyn->efd; + } + dprintf(moldyn->efd,"# total energy log file\n"); + break; + case LOG_TOTAL_MOMENTUM: + moldyn->mwrite=timer; + moldyn->mfd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->mfd<0) { + perror("[moldyn] mfd open"); + return moldyn->mfd; + } + dprintf(moldyn->efd,"# total momentum log file\n"); + break; + case SAVE_STEP: + moldyn->swrite=timer; + strncpy(moldyn->sfb,fb,63); + break; + case VISUAL_STEP: + moldyn->vwrite=timer; + strncpy(moldyn->vfb,fb,63); + visual_init(&(moldyn->vis),fb); + break; + default: + printf("unknown log mechanism: %02x\n",type); + return -1; + } + + return 0; +} + +int moldyn_log_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] log shutdown\n"); + if(moldyn->efd) close(moldyn->efd); + if(moldyn->mfd) close(moldyn->mfd); + if(&(moldyn->vis)) visual_tini(&(moldyn->vis)); return 0; } @@ -233,16 +201,15 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, int count; int ret; t_3dvec origin; - t_atom *atom; count=a*b*c; - atom=moldyn->atom; if(type==FCC) count*=4; + if(type==DIAMOND) count*=8; - atom=malloc(count*sizeof(t_atom)); - if(atom==NULL) { + moldyn->atom=malloc(count*sizeof(t_atom)); + if(moldyn->atom==NULL) { perror("malloc (atoms)"); return -1; } @@ -251,10 +218,10 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, switch(type) { case FCC: - ret=fcc_init(a,b,c,lc,atom,&origin); + ret=fcc_init(a,b,c,lc,moldyn->atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,atom,&origin); + ret=diamond_init(a,b,c,lc,moldyn->atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -269,19 +236,24 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, return -1; } + moldyn->count=count; + printf("[moldyn] created lattice with %d atoms\n",count); + while(count) { - atom[count-1].element=element; - atom[count-1].mass=mass; - atom[count-1].attr=attr; - atom[count-1].bnum=bnum; count-=1; + moldyn->atom[count].element=element; + moldyn->atom[count].mass=mass; + moldyn->atom[count].attr=attr; + moldyn->atom[count].bnum=bnum; + check_per_bound(moldyn,&(moldyn->atom[count].r)); } + return ret; } int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, - t_3dvec r,t_3dvec v) { + t_3dvec *r,t_3dvec *v) { t_atom *atom; void *ptr; @@ -295,13 +267,15 @@ int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, perror("[moldyn] realloc (add atom)"); return -1; } - - atom=ptr; - atom->r=r; - atom->v=v; - atom->element=element; - atom->bnum=bnum; - atom->attr=attr; + moldyn->atom=ptr; + + atom=moldyn->atom; + atom[count-1].r=*r; + atom[count-1].v=*v; + atom[count-1].element=element; + atom[count-1].mass=mass; + atom[count-1].bnum=bnum; + atom[count-1].attr=attr; return 0; } @@ -313,7 +287,7 @@ int destroy_atoms(t_moldyn *moldyn) { return 0; } -int thermal_init(t_moldyn *moldyn) { +int thermal_init(t_moldyn *moldyn,u8 equi_init) { /* * - gaussian distribution of velocities @@ -333,7 +307,7 @@ int thermal_init(t_moldyn *moldyn) { /* gaussian distribution of velocities */ v3_zero(&p_total); for(i=0;icount;i++) { - sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t/atom[i].mass); + sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass); /* x direction */ v=sigma*rand_get_gauss(random); atom[i].v.x=v; @@ -356,44 +330,75 @@ int thermal_init(t_moldyn *moldyn) { } /* velocity scaling */ - scale_velocity(moldyn); + scale_velocity(moldyn,equi_init); return 0; } -int scale_velocity(t_moldyn *moldyn) { +int scale_velocity(t_moldyn *moldyn,u8 equi_init) { int i; - double e,c; + double e,scale; t_atom *atom; + int count; atom=moldyn->atom; /* * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ + + /* get kinetic energy / temperature & count involved atoms */ e=0.0; + count=0; + for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) { + e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + count+=1; + } + } + if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN); + else return 0; /* no atoms involved in scaling! */ + + /* (temporary) hack for e,t = 0 */ + if(e==0.0) { + moldyn->t=0.0; + if(moldyn->t_ref!=0.0) + thermal_init(moldyn,equi_init); + else + return 0; /* no scaling needed */ + } + + + /* get scaling factor */ + scale=moldyn->t_ref/moldyn->t; + if(equi_init&TRUE) + scale*=2.0; + else + if(moldyn->pt_scale&T_SCALE_BERENDSEN) + scale=1.0+moldyn->tau*(scale-1.0)/moldyn->t_tc; + scale=sqrt(scale); + + /* velocity scaling */ for(i=0;icount;i++) - e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - c=sqrt((2.0*e)/(3.0*moldyn->count*K_BOLTZMANN*moldyn->t)); - for(i=0;icount;i++) - v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c)); + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) + v3_scale(&(atom[i].v),&(atom[i].v),scale); return 0; } -double get_e_kin(t_atom *atom,int count) { +double get_e_kin(t_moldyn *moldyn) { int i; - double e; + t_atom *atom; - e=0.0; + atom=moldyn->atom; + moldyn->ekin=0.0; - for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - return e; + return moldyn->ekin; } double get_e_pot(t_moldyn *moldyn) { @@ -401,23 +406,26 @@ double get_e_pot(t_moldyn *moldyn) { return moldyn->energy; } -double get_total_energy(t_moldyn *moldyn) { +double update_e_kin(t_moldyn *moldyn) { - double e; + return(get_e_kin(moldyn)); +} - e=get_e_kin(moldyn->atom,moldyn->count); - e+=get_e_pot(moldyn); +double get_total_energy(t_moldyn *moldyn) { - return e; + return(moldyn->ekin+moldyn->energy); } -t_3dvec get_total_p(t_atom *atom, int count) { +t_3dvec get_total_p(t_moldyn *moldyn) { t_3dvec p,p_total; int i; + t_atom *atom; + + atom=moldyn->atom; v3_zero(&p_total); - for(i=0;icount;i++) { v3_scale(&p,&(atom[i].v),atom[i].mass); v3_add(&p_total,&p_total,&p); } @@ -425,15 +433,19 @@ t_3dvec get_total_p(t_atom *atom, int count) { return p_total; } -double estimate_time_step(t_moldyn *moldyn,double nn_dist,double t) { +double estimate_time_step(t_moldyn *moldyn,double nn_dist) { double tau; - tau=0.05*nn_dist/(sqrt(3.0*K_BOLTZMANN*t/moldyn->atom[0].mass)); - tau*=1.0E-9; - if(tautau) - printf("[moldyn] warning: time step (%f > %.15f)\n", - moldyn->tau,tau); + /* nn_dist is the nearest neighbour distance */ + + if(moldyn->t==5.0) { + printf("[moldyn] i do not estimate timesteps below %f K!\n", + MOLDYN_CRITICAL_EST_TEMP); + return 23.42; + } + + tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t); return tau; } @@ -448,11 +460,11 @@ int link_cell_init(t_moldyn *moldyn) { t_linkcell *lc; int i; + int fd; - lc=&(moldyn->lc); + fd=open("/dev/null",O_WRONLY); - /* list log fd */ - lc->listfd=open("/dev/null",O_WRONLY); + lc=&(moldyn->lc); /* partitioning the md cell */ lc->nx=moldyn->dim.x/moldyn->cutoff; @@ -465,11 +477,11 @@ int link_cell_init(t_moldyn *moldyn) { lc->cells=lc->nx*lc->ny*lc->nz; lc->subcell=malloc(lc->cells*sizeof(t_list)); - printf("initializing linked cells (%d)\n",lc->cells); + printf("[moldyn] initializing linked cells (%d)\n",lc->cells); for(i=0;icells;i++) //list_init(&(lc->subcell[i]),1); - list_init(&(lc->subcell[i])); + list_init(&(lc->subcell[i]),fd); link_cell_update(moldyn); @@ -493,7 +505,7 @@ int link_cell_update(t_moldyn *moldyn) { for(i=0;icells;i++) list_destroy(&(moldyn->lc.subcell[i])); - for(count=0;countcount;count++) { + for(count=0;countcount;count++) { i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; @@ -522,7 +534,6 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { count2=27; a=nx*ny; - cell[0]=lc->subcell[i+j*nx+k*a]; for(ci=-1;ci<=1;ci++) { bx=0; @@ -556,7 +567,7 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { } } - lc->dnlc=count2; + lc->dnlc=count1; lc->countn=27; return count2; @@ -572,18 +583,16 @@ int link_cell_shutdown(t_moldyn *moldyn) { for(i=0;inx*lc->ny*lc->nz;i++) list_shutdown(&(moldyn->lc.subcell[i])); - if(lc->listfd) close(lc->listfd); - return 0; } -int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau ) { +int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { int count; void *ptr; t_moldyn_schedule *schedule; - schedule=moldyn->schedule; + schedule=&(moldyn->schedule); count=++(schedule->content_count); ptr=realloc(moldyn->schedule.runs,count*sizeof(int)); @@ -591,6 +600,7 @@ int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau ) { perror("[moldyn] realloc (runs)"); return -1; } + moldyn->schedule.runs=ptr; moldyn->schedule.runs[count-1]=runs; ptr=realloc(schedule->tau,count*sizeof(double)); @@ -598,6 +608,7 @@ int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau ) { perror("[moldyn] realloc (tau)"); return -1; } + moldyn->schedule.tau=ptr; moldyn->schedule.tau[count-1]=tau; return 0; @@ -622,11 +633,16 @@ int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { int moldyn_integrate(t_moldyn *moldyn) { int i,sched; - unsigned int e,m,s,d,v; + unsigned int e,m,s,v; t_3dvec p; - + t_moldyn_schedule *schedule; + t_atom *atom; int fd; char fb[128]; + double ds; + + schedule=&(moldyn->schedule); + atom=moldyn->atom; /* initialize linked cell method */ link_cell_init(moldyn); @@ -635,27 +651,33 @@ int moldyn_integrate(t_moldyn *moldyn) { e=moldyn->ewrite; m=moldyn->mwrite; s=moldyn->swrite; - d=moldyn->dwrite; v=moldyn->vwrite; - if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) { - printf("[moldyn] warning, lv system not initialized\n"); - return -1; - } - /* sqaure of some variables */ moldyn->tau_square=moldyn->tau*moldyn->tau; moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; - /* calculate initial forces */ - moldyn->potential_force_function(moldyn); + potential_force_calc(moldyn); + /* do some checks before we actually start calculating bullshit */ + if(moldyn->cutoff>0.5*moldyn->dim.x) + printf("[moldyn] warning: cutoff > 0.5 x dim.x\n"); + if(moldyn->cutoff>0.5*moldyn->dim.y) + printf("[moldyn] warning: cutoff > 0.5 x dim.y\n"); + if(moldyn->cutoff>0.5*moldyn->dim.z) + printf("[moldyn] warning: cutoff > 0.5 x dim.z\n"); + ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass; + if(ds>0.05*moldyn->nnd) + printf("[moldyn] warning: forces too high / tau too small!\n"); + + /* zero absolute time */ + moldyn->time=0.0; for(sched=0;schedschedule.content_count;sched++) { - /* setting amont of runs and finite time step size */ + /* setting amount of runs and finite time step size */ moldyn->tau=schedule->tau[sched]; moldyn->tau_square=moldyn->tau*moldyn->tau; - moldyn->timesteps=schedule->runs[sched]; + moldyn->time_steps=schedule->runs[sched]; /* integration according to schedule */ @@ -664,18 +686,27 @@ int moldyn_integrate(t_moldyn *moldyn) { /* integration step */ moldyn->integrate(moldyn); + /* p/t scaling */ + if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT)) + scale_velocity(moldyn,FALSE); + + /* increase absolute time */ + moldyn->time+=moldyn->tau; + /* check for log & visualization */ if(e) { if(!(i%e)) dprintf(moldyn->efd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f %.45f %.45f\n", + moldyn->time,update_e_kin(moldyn), + moldyn->energy, get_total_energy(moldyn)); } if(m) { if(!(i%m)) { - p=get_total_p(moldyn->atom,moldyn->count); + p=get_total_p(moldyn); dprintf(moldyn->mfd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f\n",moldyn->time, v3_norm(&p)); } } @@ -695,18 +726,21 @@ int moldyn_integrate(t_moldyn *moldyn) { } if(v) { if(!(i%v)) { - visual_atoms(moldyn->visual,i*moldyn->tau, + visual_atoms(&(moldyn->vis),moldyn->time, moldyn->atom,moldyn->count); - printf("\rsteps: %d",i); + printf("\rsched: %d, steps: %d",sched,i); fflush(stdout); } } + } /* check for hooks */ if(schedule->hook) schedule->hook(moldyn,schedule->hook_params); + } + return 0; } @@ -730,7 +764,7 @@ int velocity_verlet(t_moldyn *moldyn) { v3_add(&(atom[i].r),&(atom[i].r),&delta); v3_scale(&delta,&(atom[i].f),0.5*tau_square/atom[i].mass); v3_add(&(atom[i].r),&(atom[i].r),&delta); - v3_per_bound(&(atom[i].r),&(moldyn->dim)); + check_per_bound(moldyn,&(atom[i].r)); /* velocities */ v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass); @@ -738,15 +772,11 @@ int velocity_verlet(t_moldyn *moldyn) { } /* neighbour list update */ -printf("list update ...\n"); link_cell_update(moldyn); -printf("done\n"); /* forces depending on chosen potential */ -printf("calc potential/force ...\n"); potential_force_calc(moldyn); //moldyn->potential_force_function(moldyn); -printf("done\n"); for(i=0;icount; - atom=moldyn->atom; + itom=moldyn->atom; lc=&(moldyn->lc); /* reset energy */ moldyn->energy=0.0; for(i=0;ipf_func1b(moldyn,&(atom[i])); + if(itom[i].attr&ATOM_ATTR_1BP) + moldyn->func1b(moldyn,&(itom[i])); /* 2 body pair potential/force */ - if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { - + if(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { + link_cell_neighbour_index(moldyn, - (atom[i].r.x+moldyn->dim.x/2)/lc->x, - (atom[i].r.y+moldyn->dim.y/2)/lc->y, - (atom[i].r.z+moldyn->dim.z/2)/lc->z, - neighbour); + (itom[i].r.x+moldyn->dim.x/2)/lc->x, + (itom[i].r.y+moldyn->dim.y/2)/lc->y, + (itom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour_i); countn=lc->countn; dnlc=lc->dnlc; for(j=0;jstart==NULL) continue; - bc=(jcurrent->data; + jtom=this->current->data; - if(btom==&(atom[i])) + if(jtom==&(itom[i])) continue; - if((btom->attr&ATOM_ATTR_2BP)& - (atom[i].attr&ATOM_ATTR_2BP)) - moldyn->pf_func2b(moldyn, - &(atom[i]), - btom, - bc); + if((jtom->attr&ATOM_ATTR_2BP)& + (itom[i].attr&ATOM_ATTR_2BP)) + moldyn->func2b(moldyn, + &(itom[i]), + jtom, + bc_ij); /* 3 body potential/force */ - if(!(atom[i].attr&ATOM_ATTR_3BP)|| - !(btom->attr&ATOM_ATTR_3BP)) + if(!(itom[i].attr&ATOM_ATTR_3BP)|| + !(jtom->attr&ATOM_ATTR_3BP)) continue; - link_cell_neighbour_index(moldyn, - (btom->r.x+moldyn->dim.x/2)/lc->x, - (btom->r.y+moldyn->dim.y/2)/lc->y, - (btom->r.z+moldyn->dim.z/2)/lc->z, - neighbourk); - - for(k=0;kcountn;k++) { - - thisk=&(neighbourk[k]); - list_reset(thisk); + /* + * according to mr. nordlund, we dont need to take the + * sum over all atoms now, as 'this is centered' around + * atom i ... + * i am not quite sure though! there is a not vanishing + * part even if f_c_ik is zero ... + * this analytical potentials suck! + * switching from mc to md to dft soon! + */ + + // link_cell_neighbour_index(moldyn, + // (jtom->r.x+moldyn->dim.x/2)/lc->x, + // (jtom->r.y+moldyn->dim.y/2)/lc->y, + // (jtom->r.z+moldyn->dim.z/2)/lc->z, + // neighbour_j); + +// /* neighbours of j */ +// for(k=0;kcountn;k++) { +// +// that=&(neighbour_j[k]); +// list_reset(that); +// +// if(that->start==NULL) +// continue; +// +// bc_ijk=(kdnlc)?0:1; +// +// do { +// +// ktom=that->current->data; +// +// if(!(ktom->attr&ATOM_ATTR_3BP)) +// continue; +// +// if(ktom==jtom) +// continue; +// +// if(ktom==&(itom[i])) +// continue; +// +// moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk); +// +/* } while(list_next(that)!=\ */ +// L_NO_NEXT_ELEMENT); +// +// } + + /* copy the neighbour lists */ + memcpy(neighbour_i2,neighbour_i, + 27*sizeof(t_list)); + + /* get neighbours of i */ + for(k=0;kstart==NULL) + if(that->start==NULL) continue; - bck=(kdnlc)?0:1; + bc_ijk=(kcurrent->data; + ktom=that->current->data; if(!(ktom->attr&ATOM_ATTR_3BP)) continue; - if(ktom==btom) + if(ktom==jtom) continue; - if(ktom==&(atom[i])) + if(ktom==&(itom[i])) continue; - moldyn->pf_func3b(moldyn,&(atom[i]),btom,ktom,bck); +printf("Debug: atom %d before 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x); + moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk); +printf("Debug: atom %d after 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x); - } while(list_next(thisk)!=\ + } while(list_next(that)!=\ L_NO_NEXT_ELEMENT); + + } } while(list_next(this)!=L_NO_NEXT_ELEMENT); } @@ -883,20 +964,26 @@ int potential_force_calc(t_moldyn *moldyn) { int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { double x,y,z; + t_3dvec *dim; + + dim=&(moldyn->dim); x=0.5*dim->x; y=0.5*dim->y; z=0.5*dim->z; - if(moldyn->MOLDYN_ATTR_PBX) + if(moldyn->status&MOLDYN_STAT_PBX) { if(a->x>=x) a->x-=dim->x; else if(-a->x>x) a->x+=dim->x; - if(moldyn->MOLDYN_ATTR_PBY) + } + if(moldyn->status&MOLDYN_STAT_PBY) { if(a->y>=y) a->y-=dim->y; else if(-a->y>y) a->y+=dim->y; - if(moldyn->MOLDYN_ATTR_PBZ) + } + if(moldyn->status&MOLDYN_STAT_PBZ) { if(a->z>=z) a->z-=dim->z; else if(-a->z>z) a->z+=dim->z; + } return 0; } @@ -908,7 +995,7 @@ int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { /* harmonic oscillator potential and force */ -int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc)) { +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_ho_params *params; t_3dvec force,distance; @@ -919,9 +1006,8 @@ int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc)) { sc=params->spring_constant; equi_dist=params->equilibrium_distance; - v3_sub(&distance,&(ai->r),&(aj->r); + v3_sub(&distance,&(ai->r),&(aj->r)); - v3_per_bound(&distance,&(moldyn->dim)); if(bc) check_per_bound(moldyn,&distance); d=v3_norm(&distance); if(d<=moldyn->cutoff) { @@ -940,10 +1026,10 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_lj_params *params; t_3dvec force,distance; - double d,h1,h2,u; + double d,h1,h2; double eps,sig6,sig12; - params=moldyn->pot_params; + params=moldyn->pot2b_params; eps=params->epsilon4; sig6=params->sigma6; sig12=params->sigma12; @@ -965,7 +1051,7 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { d=+h1-h2; d*=eps; v3_scale(&force,&distance,d); - v3_add(&(ai->f),&(aj->f),&force); + v3_add(&(ai->f),&(ai->f),&force); } return 0; @@ -975,6 +1061,20 @@ int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { * tersoff potential & force for 2 sorts of atoms */ +/* create mixed terms from parameters and set them */ +int tersoff_mult_complete_params(t_tersoff_mult_params *p) { + + printf("[moldyn] tersoff parameter completion\n"); + p->Smixed=sqrt(p->S[0]*p->S[1]); + p->Rmixed=sqrt(p->R[0]*p->R[1]); + p->Amixed=sqrt(p->A[0]*p->A[1]); + p->Bmixed=sqrt(p->B[0]*p->B[1]); + p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]); + p->mu_m=0.5*(p->mu[0]+p->mu[1]); + + return 0; +} + /* tersoff 1 body part */ int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { @@ -1010,12 +1110,17 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_tersoff_mult_params *params; t_tersoff_exchange *exchange; - t_3dvec dist_ij; + t_3dvec dist_ij,force; double d_ij; - double A,B,R,S,lambda; + double A,B,R,S,lambda,mu; + double f_r,df_r; + double f_c,df_c; int num; + double s_r; + double arg; + double scale; - params=moldyn->pot_params; + params=moldyn->pot2b_params; num=ai->bnum; exchange=&(params->exchange); @@ -1031,8 +1136,11 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { if(bc) check_per_bound(moldyn,&dist_ij); - /* save for use in 3bp */ /* REALLY ?!?!?! */ - exchange->dist_ij=dist_ij; + d_ij=v3_norm(&dist_ij); + + /* save for use in 3bp */ + exchange->dist_ij=dist_ij; /* <- needed ? */ + exchange->d_ij=d_ij; /* constants */ if(num==aj->bnum) { @@ -1042,7 +1150,8 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { lambda=params->lambda[num]; /* more constants depending of atoms i and j, needed in 3bp */ params->exchange.B=&(params->B[num]); - params->exchange.mu=params->mu[num]; + params->exchange.mu=&(params->mu[num]); + mu=params->mu[num]; params->exchange.chi=1.0; } else { @@ -1053,18 +1162,14 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { /* more constants depending of atoms i and j, needed in 3bp */ params->exchange.B=&(params->Bmixed); params->exchange.mu=&(params->mu_m); + mu=params->mu_m; params->exchange.chi=params->chi; } - d_ij=v3_norm(&dist_ij); - - /* save for use in 3bp */ - exchange->d_ij=d_ij; - if(d_ij>S) return 0; - f_r=A*exp(-lamda*d_ij); + f_r=A*exp(-lambda*d_ij); df_r=-lambda*f_r/d_ij; /* f_a, df_a calc + save for 3bp use */ @@ -1079,17 +1184,17 @@ int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { } else { s_r=S-R; - arg=PI*(d_ij-R)/s_r; + arg=M_PI*(d_ij-R)/s_r; f_c=0.5+0.5*cos(arg); - df_c=-0.5*sin(arg)*(PI/(s_r*d_ij)); + df_c=-0.5*sin(arg)*(M_PI/(s_r*d_ij)); scale=df_c*f_r+df_r*f_c; v3_scale(&force,&dist_ij,scale); } /* add forces */ v3_add(&(ai->f),&(ai->f),&force); - /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ - moldyn->energy+=(0.25*f_r*f_c); + /* energy is 0.5 f_r f_c ... */ + moldyn->energy+=(0.5*f_r*f_c); /* save for use in 3bp */ exchange->f_c=f_c; @@ -1110,15 +1215,24 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { t_3dvec dist_ij,dist_ik,dist_jk; t_3dvec temp,force; double R,S,s_r; - double d_ij,d_ik,d_jk; + double d_ij,d_ij2,d_ik,d_jk; double f_c,df_c,b_ij,f_a,df_a; - double n,c,d,h,neta,betan,betan_1; + double f_c_ik,df_c_ik,arg; + double scale; + double chi; + double n,c,d,h,beta,betan; + double c2,d2,c2d2; + double numer,denom; double theta,cos_theta,sin_theta; + double d_theta,d_theta1,d_theta2; + double h_cos,h_cos2,d2_h_cos2; + double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n; + double bracket3,bracket3_pow_1,bracket3_pow; int num; - params=moldyn->pot_params; + params=moldyn->pot3b_params; num=ai->bnum; - exchange=params->exchange; + exchange=&(params->exchange); if(!(exchange->run3bp)) return 0; @@ -1148,7 +1262,7 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { */ - v3_sub(&dist_ik,&(aj->i),&(ak->r)); + v3_sub(&dist_ik,&(ai->r),&(ak->r)); if(bc) check_per_bound(moldyn,&dist_ik); d_ik=v3_norm(&dist_ik); @@ -1173,9 +1287,9 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { } else { s_r=S-R; - arg=PI*(d_ik-R)/s_r; + arg=M_PI*(d_ik-R)/s_r; f_c_ik=0.5+0.5*cos(arg); - df_c_ik=-0.5*sin(arg)*(PI/(s_r*d_ik)); + df_c_ik=-0.5*sin(arg)*(M_PI/(s_r*d_ik)); } v3_sub(&dist_jk,&(aj->r),&(ak->r)); @@ -1196,7 +1310,7 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { denom=2*d_ij*d_ik; cos_theta=numer/denom; sin_theta=sqrt(1.0-(cos_theta*cos_theta)); - theta=arccos(cos_theta); + theta=acos(cos_theta); d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom); d_theta1=2*denom-numer*2*d_ik/d_ij; d_theta2=2*denom-numer*2*d_ij/d_ik; @@ -1221,12 +1335,12 @@ int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { b_ij=chi*bracket3_pow; /* derivation of theta */ - v3_scale(&force,&dist_ij,d1_theta); + v3_scale(&force,&dist_ij,d_theta1); v3_scale(&temp,&dist_ik,d_theta2); v3_add(&force,&force,&temp); /* part 1 of derivation of b_ij */ - v3_scale(&force,sin_theta*2*h_cos*f_c_ik*frac1); + v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1); /* part 2 of derivation of b_ij */ v3_scale(&temp,&dist_ik,df_c_ik*bracket1);