X-Git-Url: https://www.hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=af0132dff157564f46f593c3280700b045a1810c;hb=a9fbc66448c52bc4138176739b33d17ba86b7eae;hp=82749b2f10abf978c9636e213585e21c8393741a;hpb=85abe46fecc79a3d7885ff6124186b2be2ca96ac;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 82749b2..af0132d 100644 --- a/moldyn.c +++ b/moldyn.c @@ -5,19 +5,198 @@ * */ -#include "moldyn.h" - +#define _GNU_SOURCE #include #include +#include +#include +#include +#include +#include #include +#include "moldyn.h" + #include "math/math.h" #include "init/init.h" #include "random/random.h" +#include "visual/visual.h" +#include "list/list.h" + + +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { + + //int ret; + + //ret=moldyn_parse_argv(moldyn,argc,argv); + //if(ret<0) return ret; + + memset(moldyn,0,sizeof(t_moldyn)); + + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; + + return 0; +} + +int moldyn_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] shutdown\n"); + moldyn_log_shutdown(moldyn); + link_cell_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); + + return 0; +} + +int set_int_alg(t_moldyn *moldyn,u8 algo) { + + switch(algo) { + case MOLDYN_INTEGRATE_VERLET: + moldyn->integrate=velocity_verlet; + break; + default: + printf("unknown integration algorithm: %02x\n",algo); + return -1; + } + + return 0; +} + +int set_cutoff(t_moldyn *moldyn,double cutoff) { + + moldyn->cutoff=cutoff; + + return 0; +} + +int set_temperature(t_moldyn *moldyn,double t_ref) { + + moldyn->t_ref=t_ref; + + return 0; +} + +int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) { + + moldyn->pt_scale=(ptype|ttype); + moldyn->t_tc=ttc; + moldyn->p_tc=ptc; + + return 0; +} + +int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { + + moldyn->dim.x=x; + moldyn->dim.y=y; + moldyn->dim.z=z; + + if(visualize) { + moldyn->vis.dim.x=x; + moldyn->vis.dim.y=y; + moldyn->vis.dim.z=z; + } + + return 0; +} + +int set_nn_dist(t_moldyn *moldyn,double dist) { + + moldyn->nnd=dist; + + return 0; +} +int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { -int create_lattice(unsigned char type,int element,double mass,double lc, - int a,int b,int c,t_atom **atom) { + if(x) + moldyn->status|=MOLDYN_STAT_PBX; + + if(y) + moldyn->status|=MOLDYN_STAT_PBY; + + if(z) + moldyn->status|=MOLDYN_STAT_PBZ; + + return 0; +} + +int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { + + moldyn->func1b=func; + moldyn->pot1b_params=params; + + return 0; +} + +int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { + + moldyn->func2b=func; + moldyn->pot2b_params=params; + + return 0; +} + +int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { + + moldyn->func3b=func; + moldyn->pot3b_params=params; + + return 0; +} + +int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) { + + switch(type) { + case LOG_TOTAL_ENERGY: + moldyn->ewrite=timer; + moldyn->efd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->efd<0) { + perror("[moldyn] efd open"); + return moldyn->efd; + } + dprintf(moldyn->efd,"# total energy log file\n"); + break; + case LOG_TOTAL_MOMENTUM: + moldyn->mwrite=timer; + moldyn->mfd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->mfd<0) { + perror("[moldyn] mfd open"); + return moldyn->mfd; + } + dprintf(moldyn->efd,"# total momentum log file\n"); + break; + case SAVE_STEP: + moldyn->swrite=timer; + strncpy(moldyn->sfb,fb,63); + break; + case VISUAL_STEP: + moldyn->vwrite=timer; + strncpy(moldyn->vfb,fb,63); + visual_init(&(moldyn->vis),fb); + break; + default: + printf("unknown log mechanism: %02x\n",type); + return -1; + } + + return 0; +} + +int moldyn_log_shutdown(t_moldyn *moldyn) { + + printf("[moldyn] log shutdown\n"); + if(moldyn->efd) close(moldyn->efd); + if(moldyn->mfd) close(moldyn->mfd); + if(&(moldyn->vis)) visual_tini(&(moldyn->vis)); + + return 0; +} + +int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, + u8 attr,u8 bnum,int a,int b,int c) { int count; int ret; @@ -26,10 +205,11 @@ int create_lattice(unsigned char type,int element,double mass,double lc, count=a*b*c; if(type==FCC) count*=4; + if(type==DIAMOND) count*=8; - *atom=malloc(count*sizeof(t_atom)); - if(*atom==NULL) { + moldyn->atom=malloc(count*sizeof(t_atom)); + if(moldyn->atom==NULL) { perror("malloc (atoms)"); return -1; } @@ -38,10 +218,10 @@ int create_lattice(unsigned char type,int element,double mass,double lc, switch(type) { case FCC: - ret=fcc_init(a,b,c,lc,*atom,&origin); + ret=fcc_init(a,b,c,lc,moldyn->atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,*atom,&origin); + ret=diamond_init(a,b,c,lc,moldyn->atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -56,23 +236,58 @@ int create_lattice(unsigned char type,int element,double mass,double lc, return -1; } + moldyn->count=count; + printf("[moldyn] created lattice with %d atoms\n",count); + while(count) { - (*atom)[count-1].element=element; - (*atom)[count-1].mass=mass; count-=1; + moldyn->atom[count].element=element; + moldyn->atom[count].mass=mass; + moldyn->atom[count].attr=attr; + moldyn->atom[count].bnum=bnum; + check_per_bound(moldyn,&(moldyn->atom[count].r)); } + return ret; } -int destroy_lattice(t_atom *atom) { +int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, + t_3dvec *r,t_3dvec *v) { + + t_atom *atom; + void *ptr; + int count; + + atom=moldyn->atom; + count=++(moldyn->count); + + ptr=realloc(atom,count*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (add atom)"); + return -1; + } + moldyn->atom=ptr; + + atom=moldyn->atom; + atom[count-1].r=*r; + atom[count-1].v=*v; + atom[count-1].element=element; + atom[count-1].mass=mass; + atom[count-1].bnum=bnum; + atom[count-1].attr=attr; + + return 0; +} + +int destroy_atoms(t_moldyn *moldyn) { - if(atom) free(atom); + if(moldyn->atom) free(moldyn->atom); return 0; } -int thermal_init(t_atom *atom,t_random *random,int count,double t) { +int thermal_init(t_moldyn *moldyn,u8 equi_init) { /* * - gaussian distribution of velocities @@ -83,11 +298,16 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) { int i; double v,sigma; t_3dvec p_total,delta; + t_atom *atom; + t_random *random; + + atom=moldyn->atom; + random=&(moldyn->random); /* gaussian distribution of velocities */ v3_zero(&p_total); - for(i=0;icount;i++) { + sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass); /* x direction */ v=sigma*rand_get_gauss(random); atom[i].v.x=v; @@ -103,72 +323,109 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) { } /* zero total momentum */ - v3_scale(&p_total,&p_total,1.0/count); - for(i=0;icount); + for(i=0;icount;i++) { v3_scale(&delta,&p_total,1.0/atom[i].mass); v3_sub(&(atom[i].v),&(atom[i].v),&delta); } /* velocity scaling */ - scale_velocity(atom,count,t); + scale_velocity(moldyn,equi_init); return 0; } -int scale_velocity(t_atom *atom,int count,double t) { +int scale_velocity(t_moldyn *moldyn,u8 equi_init) { int i; - double e,c; + double e,scale; + t_atom *atom; + int count; + + atom=moldyn->atom; /* * - velocity scaling (E = 3/2 N k T), E: kinetic energy */ + + /* get kinetic energy / temperature & count involved atoms */ e=0.0; - for(i=0;icount;i++) { + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) { + e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + count+=1; + } + } + if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN); + else return 0; /* no atoms involved in scaling! */ + + /* (temporary) hack for e,t = 0 */ + if(e==0.0) { + moldyn->t=0.0; + if(moldyn->t_ref!=0.0) + thermal_init(moldyn,equi_init); + else + return 0; /* no scaling needed */ + } + + + /* get scaling factor */ + scale=moldyn->t_ref/moldyn->t; + if(equi_init&TRUE) + scale*=2.0; + else + if(moldyn->pt_scale&T_SCALE_BERENDSEN) + scale=1.0+moldyn->tau*(scale-1.0)/moldyn->t_tc; + scale=sqrt(scale); + + /* velocity scaling */ + for(i=0;icount;i++) + if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) + v3_scale(&(atom[i].v),&(atom[i].v),scale); return 0; } -double get_e_kin(t_atom *atom,int count) { +double get_e_kin(t_moldyn *moldyn) { int i; - double e; + t_atom *atom; - e=0.0; + atom=moldyn->atom; + moldyn->ekin=0.0; - for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - return e; + return moldyn->ekin; } double get_e_pot(t_moldyn *moldyn) { - return(moldyn->potential(moldyn)); + return moldyn->energy; } -double get_total_energy(t_moldyn *moldyn) { +double update_e_kin(t_moldyn *moldyn) { - double e; + return(get_e_kin(moldyn)); +} - e=get_e_kin(moldyn->atom,moldyn->count); - e+=get_e_pot(moldyn); +double get_total_energy(t_moldyn *moldyn) { - return e; + return(moldyn->ekin+moldyn->energy); } -t_3dvec get_total_p(t_atom *atom, int count) { +t_3dvec get_total_p(t_moldyn *moldyn) { t_3dvec p,p_total; int i; + t_atom *atom; + + atom=moldyn->atom; v3_zero(&p_total); - for(i=0;icount;i++) { v3_scale(&p,&(atom[i].v),atom[i].mass); v3_add(&p_total,&p_total,&p); } @@ -176,6 +433,360 @@ t_3dvec get_total_p(t_atom *atom, int count) { return p_total; } +double estimate_time_step(t_moldyn *moldyn,double nn_dist) { + + double tau; + + /* nn_dist is the nearest neighbour distance */ + + if(moldyn->t==5.0) { + printf("[moldyn] i do not estimate timesteps below %f K!\n", + MOLDYN_CRITICAL_EST_TEMP); + return 23.42; + } + + tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t); + + return tau; +} + +/* + * numerical tricks + */ + +/* linked list / cell method */ + +int link_cell_init(t_moldyn *moldyn) { + + t_linkcell *lc; + int i; + int fd; + + fd=open("/dev/null",O_WRONLY); + + lc=&(moldyn->lc); + + /* partitioning the md cell */ + lc->nx=moldyn->dim.x/moldyn->cutoff; + lc->x=moldyn->dim.x/lc->nx; + lc->ny=moldyn->dim.y/moldyn->cutoff; + lc->y=moldyn->dim.y/lc->ny; + lc->nz=moldyn->dim.z/moldyn->cutoff; + lc->z=moldyn->dim.z/lc->nz; + + lc->cells=lc->nx*lc->ny*lc->nz; + lc->subcell=malloc(lc->cells*sizeof(t_list)); + + printf("[moldyn] initializing linked cells (%d)\n",lc->cells); + + for(i=0;icells;i++) + //list_init(&(lc->subcell[i]),1); + list_init(&(lc->subcell[i]),fd); + + link_cell_update(moldyn); + + return 0; +} + +int link_cell_update(t_moldyn *moldyn) { + + int count,i,j,k; + int nx,ny,nz; + t_atom *atom; + t_linkcell *lc; + + atom=moldyn->atom; + lc=&(moldyn->lc); + + nx=lc->nx; + ny=lc->ny; + nz=lc->nz; + + for(i=0;icells;i++) + list_destroy(&(moldyn->lc.subcell[i])); + + for(count=0;countcount;count++) { + i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; + j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; + k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; + list_add_immediate_ptr(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]), + &(atom[count])); + } + + return 0; +} + +int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { + + t_linkcell *lc; + int a; + int count1,count2; + int ci,cj,ck; + int nx,ny,nz; + int x,y,z; + u8 bx,by,bz; + + lc=&(moldyn->lc); + nx=lc->nx; + ny=lc->ny; + nz=lc->nz; + count1=1; + count2=27; + a=nx*ny; + + cell[0]=lc->subcell[i+j*nx+k*a]; + for(ci=-1;ci<=1;ci++) { + bx=0; + x=i+ci; + if((x<0)||(x>=nx)) { + x=(x+nx)%nx; + bx=1; + } + for(cj=-1;cj<=1;cj++) { + by=0; + y=j+cj; + if((y<0)||(y>=ny)) { + y=(y+ny)%ny; + by=1; + } + for(ck=-1;ck<=1;ck++) { + bz=0; + z=k+ck; + if((z<0)||(z>=nz)) { + z=(z+nz)%nz; + bz=1; + } + if(!(ci|cj|ck)) continue; + if(bx|by|bz) { + cell[--count2]=lc->subcell[x+y*nx+z*a]; + } + else { + cell[count1++]=lc->subcell[x+y*nx+z*a]; + } + } + } + } + + lc->dnlc=count1; + lc->countn=27; + + return count2; +} + +int link_cell_shutdown(t_moldyn *moldyn) { + + int i; + t_linkcell *lc; + + lc=&(moldyn->lc); + + for(i=0;inx*lc->ny*lc->nz;i++) + list_shutdown(&(moldyn->lc.subcell[i])); + + return 0; +} + +int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { + + int count; + void *ptr; + t_moldyn_schedule *schedule; + + schedule=&(moldyn->schedule); + count=++(schedule->content_count); + + ptr=realloc(moldyn->schedule.runs,count*sizeof(int)); + if(!ptr) { + perror("[moldyn] realloc (runs)"); + return -1; + } + moldyn->schedule.runs=ptr; + moldyn->schedule.runs[count-1]=runs; + + ptr=realloc(schedule->tau,count*sizeof(double)); + if(!ptr) { + perror("[moldyn] realloc (tau)"); + return -1; + } + moldyn->schedule.tau=ptr; + moldyn->schedule.tau[count-1]=tau; + + return 0; +} + +int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { + + moldyn->schedule.hook=hook; + moldyn->schedule.hook_params=hook_params; + + return 0; +} + +/* + * + * 'integration of newtons equation' - algorithms + * + */ + +/* start the integration */ + +int moldyn_integrate(t_moldyn *moldyn) { + + int i,sched; + unsigned int e,m,s,v; + t_3dvec p; + t_moldyn_schedule *schedule; + t_atom *atom; + int fd; + char fb[128]; + double ds; + + schedule=&(moldyn->schedule); + atom=moldyn->atom; + + /* initialize linked cell method */ + link_cell_init(moldyn); + + /* logging & visualization */ + e=moldyn->ewrite; + m=moldyn->mwrite; + s=moldyn->swrite; + v=moldyn->vwrite; + + /* sqaure of some variables */ + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; + /* calculate initial forces */ + potential_force_calc(moldyn); + + /* do some checks before we actually start calculating bullshit */ + if(moldyn->cutoff>0.5*moldyn->dim.x) + printf("[moldyn] warning: cutoff > 0.5 x dim.x\n"); + if(moldyn->cutoff>0.5*moldyn->dim.y) + printf("[moldyn] warning: cutoff > 0.5 x dim.y\n"); + if(moldyn->cutoff>0.5*moldyn->dim.z) + printf("[moldyn] warning: cutoff > 0.5 x dim.z\n"); + ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass; + if(ds>0.05*moldyn->nnd) + printf("[moldyn] warning: forces too high / tau too small!\n"); + + /* zero absolute time */ + moldyn->time=0.0; + for(sched=0;schedschedule.content_count;sched++) { + + /* setting amount of runs and finite time step size */ + moldyn->tau=schedule->tau[sched]; + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->time_steps=schedule->runs[sched]; + + /* integration according to schedule */ + + for(i=0;itime_steps;i++) { + + /* integration step */ + moldyn->integrate(moldyn); + + /* p/t scaling */ + if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT)) + scale_velocity(moldyn,FALSE); + + /* increase absolute time */ + moldyn->time+=moldyn->tau; + + /* check for log & visualization */ + if(e) { + if(!(i%e)) + dprintf(moldyn->efd, + "%.15f %.45f %.45f %.45f\n", + moldyn->time,update_e_kin(moldyn), + moldyn->energy, + get_total_energy(moldyn)); + } + if(m) { + if(!(i%m)) { + p=get_total_p(moldyn); + dprintf(moldyn->mfd, + "%.15f %.45f\n",moldyn->time, + v3_norm(&p)); + } + } + if(s) { + if(!(i%s)) { + snprintf(fb,128,"%s-%f-%.15f.save",moldyn->sfb, + moldyn->t,i*moldyn->tau); + fd=open(fb,O_WRONLY|O_TRUNC|O_CREAT); + if(fd<0) perror("[moldyn] save fd open"); + else { + write(fd,moldyn,sizeof(t_moldyn)); + write(fd,moldyn->atom, + moldyn->count*sizeof(t_atom)); + } + close(fd); + } + } + if(v) { + if(!(i%v)) { + visual_atoms(&(moldyn->vis),moldyn->time, + moldyn->atom,moldyn->count); + printf("\rsched: %d, steps: %d",sched,i); + fflush(stdout); + } + } + + } + + /* check for hooks */ + if(schedule->hook) + schedule->hook(moldyn,schedule->hook_params); + + } + + return 0; +} + +/* velocity verlet */ + +int velocity_verlet(t_moldyn *moldyn) { + + int i,count; + double tau,tau_square; + t_3dvec delta; + t_atom *atom; + + atom=moldyn->atom; + count=moldyn->count; + tau=moldyn->tau; + tau_square=moldyn->tau_square; + + for(i=0;ipotential_force_function(moldyn); + + for(i=0;icount; + itom=moldyn->atom; + lc=&(moldyn->lc); + + /* reset energy */ + moldyn->energy=0.0; + + for(i=0;ifunc1b(moldyn,&(itom[i])); + + /* 2 body pair potential/force */ + if(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { + + link_cell_neighbour_index(moldyn, + (itom[i].r.x+moldyn->dim.x/2)/lc->x, + (itom[i].r.y+moldyn->dim.y/2)/lc->y, + (itom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour_i); + + countn=lc->countn; + dnlc=lc->dnlc; + + for(j=0;jstart==NULL) + continue; + + bc_ij=(jcurrent->data; + + if(jtom==&(itom[i])) + continue; + + if((jtom->attr&ATOM_ATTR_2BP)& + (itom[i].attr&ATOM_ATTR_2BP)) + moldyn->func2b(moldyn, + &(itom[i]), + jtom, + bc_ij); + + /* 3 body potential/force */ + + if(!(itom[i].attr&ATOM_ATTR_3BP)|| + !(jtom->attr&ATOM_ATTR_3BP)) + continue; + + /* + * according to mr. nordlund, we dont need to take the + * sum over all atoms now, as 'this is centered' around + * atom i ... + * i am not quite sure though! there is a not vanishing + * part even if f_c_ik is zero ... + * this analytical potentials suck! + * switching from mc to md to dft soon! + */ + + // link_cell_neighbour_index(moldyn, + // (jtom->r.x+moldyn->dim.x/2)/lc->x, + // (jtom->r.y+moldyn->dim.y/2)/lc->y, + // (jtom->r.z+moldyn->dim.z/2)/lc->z, + // neighbour_j); + +// /* neighbours of j */ +// for(k=0;kcountn;k++) { +// +// that=&(neighbour_j[k]); +// list_reset(that); +// +// if(that->start==NULL) +// continue; +// +// bc_ijk=(kdnlc)?0:1; +// +// do { +// +// ktom=that->current->data; +// +// if(!(ktom->attr&ATOM_ATTR_3BP)) +// continue; +// +// if(ktom==jtom) +// continue; +// +// if(ktom==&(itom[i])) +// continue; +// +// moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk); +// +/* } while(list_next(that)!=\ */ +// L_NO_NEXT_ELEMENT); +// +// } + + /* copy the neighbour lists */ + memcpy(neighbour_i2,neighbour_i, + 27*sizeof(t_list)); + + /* get neighbours of i */ + for(k=0;kstart==NULL) + continue; + + bc_ijk=(kcurrent->data; + + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; + + if(ktom==jtom) + continue; + + if(ktom==&(itom[i])) + continue; + +printf("Debug: atom %d before 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x); + moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk); +printf("Debug: atom %d after 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x); + + } while(list_next(that)!=\ + L_NO_NEXT_ELEMENT); + + } + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); + } + } + } + + return 0; +} + +/* + * periodic boundayr checking + */ + +int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { + + double x,y,z; + t_3dvec *dim; + + dim=&(moldyn->dim); + + x=0.5*dim->x; + y=0.5*dim->y; + z=0.5*dim->z; + + if(moldyn->status&MOLDYN_STAT_PBX) { + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; + } + if(moldyn->status&MOLDYN_STAT_PBY) { + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + } + if(moldyn->status&MOLDYN_STAT_PBZ) { + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + } + + return 0; +} + + +/* + * example potentials + */ + +/* harmonic oscillator potential and force */ + +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_ho_params *params; + t_3dvec force,distance; + double d; + double sc,equi_dist; + + params=moldyn->pot2b_params; + sc=params->spring_constant; + equi_dist=params->equilibrium_distance; + + v3_sub(&distance,&(ai->r),&(aj->r)); + + if(bc) check_per_bound(moldyn,&distance); + d=v3_norm(&distance); + if(d<=moldyn->cutoff) { + /* energy is 1/2 (d-d0)^2, but we will add this twice ... */ + moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist)); + v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); + v3_add(&(ai->f),&(ai->f),&force); + } + + return 0; +} + /* lennard jones potential & force for one sort of atoms */ -double potential_lennard_jones(t_moldyn *moldyn) { +int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { t_lj_params *params; - t_atom *atom; - int i,j; - int count; - t_3dvec distance; - double d,help; - double u; + t_3dvec force,distance; + double d,h1,h2; double eps,sig6,sig12; - params=moldyn->pot_params; - atom=moldyn->atom; - count=moldyn->count; - eps=params->epsilon; + params=moldyn->pot2b_params; + eps=params->epsilon4; sig6=params->sigma6; sig12=params->sigma12; - u=0.0; - for(i=0;ir),&(aj->r)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_absolute_square(&distance); /* 1/r^2 */ + if(d<=moldyn->cutoff_square) { + d=1.0/d; /* 1/r^2 */ + h2=d*d; /* 1/r^4 */ + h2*=d; /* 1/r^6 */ + h1=h2*h2; /* 1/r^12 */ + /* energy is eps*..., but we will add this twice ... */ + moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2); + h2*=d; /* 1/r^8 */ + h1*=d; /* 1/r^14 */ + h2*=6*sig6; + h1*=12*sig12; + d=+h1-h2; + d*=eps; + v3_scale(&force,&distance,d); + v3_add(&(ai->f),&(ai->f),&force); } + + return 0; +} + +/* + * tersoff potential & force for 2 sorts of atoms + */ + +/* create mixed terms from parameters and set them */ +int tersoff_mult_complete_params(t_tersoff_mult_params *p) { + + printf("[moldyn] tersoff parameter completion\n"); + p->Smixed=sqrt(p->S[0]*p->S[1]); + p->Rmixed=sqrt(p->R[0]*p->R[1]); + p->Amixed=sqrt(p->A[0]*p->A[1]); + p->Bmixed=sqrt(p->B[0]*p->B[1]); + p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]); + p->mu_m=0.5*(p->mu[0]+p->mu[1]); + + return 0; +} + +/* tersoff 1 body part */ +int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { + + int num; + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; - return u; + num=ai->bnum; + params=moldyn->pot1b_params; + exchange=&(params->exchange); + + /* + * simple: point constant parameters only depending on atom i to + * their right values + */ + + exchange->beta=&(params->beta[num]); + exchange->n=&(params->n[num]); + exchange->c=&(params->c[num]); + exchange->d=&(params->d[num]); + exchange->h=&(params->h[num]); + + exchange->betan=pow(*(exchange->beta),*(exchange->n)); + exchange->c2=params->c[num]*params->c[num]; + exchange->d2=params->d[num]*params->d[num]; + exchange->c2d2=exchange->c2/exchange->d2; + + return 0; } + +/* tersoff 2 body part */ +int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { -int force_lennard_jones(t_moldyn *moldyn) { + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,force; + double d_ij; + double A,B,R,S,lambda,mu; + double f_r,df_r; + double f_c,df_c; + int num; + double s_r; + double arg; + double scale; - t_lj_params *params; - int i,j,count; - t_atom *atom; - t_3dvec distance; - t_3dvec force; - double d,h1,h2; + params=moldyn->pot2b_params; + num=ai->bnum; + exchange=&(params->exchange); - atom=moldyn->atom; - count=moldyn->count; - params=moldyn->pot_params; + exchange->run3bp=0; + + /* + * we need: f_c, df_c, f_r, df_r + * + * therefore we need: R, S, A, lambda + */ - for(i=0;idim)); - d=v3_absolute_square(&distance); - if(d<=moldyn->cutoff_square) { - h1=1.0/d; /* 1/r^2 */ - d=h1*h1; /* 1/r^4 */ - h2=d*d; /* 1/r^8 */ - h1*=d; /* 1/r^6 */ - h1*=h2; /* 1/r^14 */ - } - } + v3_sub(&dist_ij,&(ai->r),&(aj->r)); + + if(bc) check_per_bound(moldyn,&dist_ij); + + d_ij=v3_norm(&dist_ij); + + /* save for use in 3bp */ + exchange->dist_ij=dist_ij; /* <- needed ? */ + exchange->d_ij=d_ij; + + /* constants */ + if(num==aj->bnum) { + S=params->S[num]; + R=params->R[num]; + A=params->A[num]; + lambda=params->lambda[num]; + /* more constants depending of atoms i and j, needed in 3bp */ + params->exchange.B=&(params->B[num]); + params->exchange.mu=&(params->mu[num]); + mu=params->mu[num]; + params->exchange.chi=1.0; + } + else { + S=params->Smixed; + R=params->Rmixed; + A=params->Amixed; + lambda=params->lambda_m; + /* more constants depending of atoms i and j, needed in 3bp */ + params->exchange.B=&(params->Bmixed); + params->exchange.mu=&(params->mu_m); + mu=params->mu_m; + params->exchange.chi=params->chi; } + if(d_ij>S) + return 0; + + f_r=A*exp(-lambda*d_ij); + df_r=-lambda*f_r/d_ij; + + /* f_a, df_a calc + save for 3bp use */ + exchange->f_a=-B*exp(-mu*d_ij); + exchange->df_a=-mu*exchange->f_a/d_ij; + + if(d_ijf),&(ai->f),&force); + /* energy is 0.5 f_r f_c ... */ + moldyn->energy+=(0.5*f_r*f_c); + + /* save for use in 3bp */ + exchange->f_c=f_c; + exchange->df_c=df_c; + + /* enable the run of 3bp function */ + exchange->run3bp=1; + + return 0; +} + +/* tersoff 3 body part */ + +int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,dist_ik,dist_jk; + t_3dvec temp,force; + double R,S,s_r; + double d_ij,d_ij2,d_ik,d_jk; + double f_c,df_c,b_ij,f_a,df_a; + double f_c_ik,df_c_ik,arg; + double scale; + double chi; + double n,c,d,h,beta,betan; + double c2,d2,c2d2; + double numer,denom; + double theta,cos_theta,sin_theta; + double d_theta,d_theta1,d_theta2; + double h_cos,h_cos2,d2_h_cos2; + double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n; + double bracket3,bracket3_pow_1,bracket3_pow; + int num; + + params=moldyn->pot3b_params; + num=ai->bnum; + exchange=&(params->exchange); + + if(!(exchange->run3bp)) + return 0; + + /* + * we need: f_c, d_fc, b_ij, db_ij, f_a, df_a + * + * we got f_c, df_c, f_a, df_a from 2bp calculation + */ + + d_ij=exchange->d_ij; + d_ij2=exchange->d_ij2; + + f_a=params->exchange.f_a; + df_a=params->exchange.df_a; + + /* d_ij is <= S, as we didn't return so far! */ + + /* + * calc of b_ij (scalar) and db_ij (vector) + * + * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta + * + * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik, + * w_ik, + * + */ + + + v3_sub(&dist_ik,&(ai->r),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_ik); + d_ik=v3_norm(&dist_ik); + + /* constants for f_c_ik calc */ + if(num==ak->bnum) { + R=params->R[num]; + S=params->S[num]; + } + else { + R=params->Rmixed; + S=params->Smixed; + } + + /* calc of f_c_ik */ + if(d_ik>S) + return 0; + + if(d_ikr),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_jk); + d_jk=v3_norm(&dist_jk); + + beta=*(exchange->beta); + betan=exchange->betan; + n=*(exchange->n); + c=*(exchange->c); + d=*(exchange->d); + h=*(exchange->h); + c2=exchange->c2; + d2=exchange->d2; + c2d2=exchange->c2d2; + + numer=d_ij2+d_ik*d_ik-d_jk*d_jk; + denom=2*d_ij*d_ik; + cos_theta=numer/denom; + sin_theta=sqrt(1.0-(cos_theta*cos_theta)); + theta=acos(cos_theta); + d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom); + d_theta1=2*denom-numer*2*d_ik/d_ij; + d_theta2=2*denom-numer*2*d_ij/d_ik; + d_theta1*=d_theta; + d_theta2*=d_theta; + + h_cos=(h-cos_theta); + h_cos2=h_cos*h_cos; + d2_h_cos2=d2-h_cos2; + + /* some usefull expressions */ + frac1=c2/(d2-h_cos2); + bracket1=1+c2d2-frac1; + bracket2=f_c_ik*bracket1; + bracket2_n_1=pow(bracket2,n-1.0); + bracket2_n=bracket2_n_1*bracket2; + bracket3=1+betan*bracket2_n; + bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0); + bracket3_pow=bracket3_pow_1*bracket3; + + /* now go on with calc of b_ij and derivation of b_ij */ + b_ij=chi*bracket3_pow; + + /* derivation of theta */ + v3_scale(&force,&dist_ij,d_theta1); + v3_scale(&temp,&dist_ik,d_theta2); + v3_add(&force,&force,&temp); + + /* part 1 of derivation of b_ij */ + v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1); + + /* part 2 of derivation of b_ij */ + v3_scale(&temp,&dist_ik,df_c_ik*bracket1); + + /* sum up and scale ... */ + v3_add(&temp,&temp,&force); + scale=bracket2_n_1*n*betan*(1+betan*bracket3_pow_1)*chi*(1.0/(2.0*n)); + v3_scale(&temp,&temp,scale); + + /* now construct an energy and a force out of that */ + v3_scale(&temp,&temp,f_a); + v3_scale(&force,&dist_ij,df_a*b_ij); + v3_add(&temp,&temp,&force); + v3_scale(&temp,&temp,f_c); + v3_scale(&force,&dist_ij,df_c*b_ij*f_a); + v3_add(&force,&force,&temp); + + /* add forces */ + v3_add(&(ai->f),&(ai->f),&force); + /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ + moldyn->energy+=(0.25*f_a*b_ij*f_c); + return 0; }