X-Git-Url: https://www.hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=505f4960a18037b6d043ddf0d7596625660b328a;hb=7aface2e184e527132819f17b0fa18a6e1ba4bc3;hp=57f76c433ae7d431fc860dc51ddc21b6982a6d29;hpb=06912ca45b46de412570a4bd5b5484aa9e8d6e6b;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 57f76c4..505f496 100644 --- a/moldyn.c +++ b/moldyn.c @@ -23,229 +23,177 @@ #include "visual/visual.h" #include "list/list.h" -int moldyn_usage(char **argv) { - - printf("\n%s usage:\n\n",argv[0]); - printf("--- general options ---\n"); - printf("-E (log total energy)\n"); - printf("-M (log total momentum)\n"); - printf("-D (dump total information)\n"); - printf("-S (single save file)\n"); - printf("-V (rasmol file)\n"); - printf("--- physics options ---\n"); - printf("-T [K] (%f)\n",MOLDYN_TEMP); - printf("-t [s] (%.15f)\n",MOLDYN_TAU); - printf("-C [m] (%.15f)\n",MOLDYN_CUTOFF); - printf("-R (%d)\n",MOLDYN_RUNS); - printf(" -- integration algo --\n"); - printf(" -I (%d)\n",MOLDYN_INTEGRATE_DEFAULT); - printf(" 0: velocity verlet\n"); - printf(" -- potential --\n"); - printf(" -P \n"); - printf(" 0: harmonic oscillator\n"); - printf(" param1: spring constant\n"); - printf(" param2: equilibrium distance\n"); - printf(" 1: lennard jones\n"); - printf(" param1: epsilon\n"); - printf(" param2: sigma\n"); - printf("\n"); + +int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { + + //int ret; + + //ret=moldyn_parse_argv(moldyn,argc,argv); + //if(ret<0) return ret; + + memset(moldyn,0,sizeof(t_moldyn)); + + rand_init(&(moldyn->random),NULL,1); + moldyn->random.status|=RAND_STAT_VERBOSE; return 0; } -int moldyn_parse_argv(t_moldyn *moldyn,int argc,char **argv) { +int moldyn_shutdown(t_moldyn *moldyn) { - int i; - t_ho_params hop; - t_lj_params ljp; - t_tersoff_params tp; - double s,e; + link_cell_shutdown(moldyn); + moldyn_log_shutdown(moldyn); + rand_close(&(moldyn->random)); + free(moldyn->atom); - memset(moldyn,0,sizeof(t_moldyn)); + return 0; +} - /* default values */ - moldyn->t=MOLDYN_TEMP; - moldyn->tau=MOLDYN_TAU; - moldyn->time_steps=MOLDYN_RUNS; - moldyn->integrate=velocity_verlet; - moldyn->potential_force_function=lennard_jones; - - /* parse argv */ - for(i=1;iewrite=atoi(argv[++i]); - strncpy(moldyn->efb,argv[++i],64); - break; - case 'M': - moldyn->mwrite=atoi(argv[++i]); - strncpy(moldyn->mfb,argv[++i],64); - break; - case 'S': - moldyn->swrite=atoi(argv[++i]); - strncpy(moldyn->sfb,argv[++i],64); - break; - case 'V': - moldyn->vwrite=atoi(argv[++i]); - strncpy(moldyn->vfb,argv[++i],64); - break; - case 'T': - moldyn->t=atof(argv[++i]); - break; - case 't': - moldyn->tau=atof(argv[++i]); - break; - case 'C': - moldyn->cutoff=atof(argv[++i]); - break; - case 'R': - moldyn->time_steps=atoi(argv[++i]); - break; - case 'I': - /* integration algorithm */ - switch(atoi(argv[++i])) { +int set_int_alg(t_moldyn *moldyn,u8 algo) { + + switch(algo) { case MOLDYN_INTEGRATE_VERLET: moldyn->integrate=velocity_verlet; break; default: - printf("unknown integration algo %s\n",argv[i]); - moldyn_usage(argv); + printf("unknown integration algorithm: %02x\n",algo); return -1; } - case 'P': - /* potential + params */ - switch(atoi(argv[++i])) { - case MOLDYN_POTENTIAL_HO: - hop.spring_constant=atof(argv[++i]); - hop.equilibrium_distance=atof(argv[++i]); - moldyn->pot_params=malloc(sizeof(t_ho_params)); - memcpy(moldyn->pot_params,&hop,sizeof(t_ho_params)); - moldyn->potential_force_function=harmonic_oscillator; - break; - case MOLDYN_POTENTIAL_LJ: - e=atof(argv[++i]); - s=atof(argv[++i]); - ljp.epsilon4=4*e; - ljp.sigma6=s*s*s*s*s*s; - ljp.sigma12=ljp.sigma6*ljp.sigma6; - moldyn->pot_params=malloc(sizeof(t_lj_params)); - memcpy(moldyn->pot_params,&ljp,sizeof(t_lj_params)); - moldyn->potential_force_function=lennard_jones; - break; - default: - printf("unknown potential %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } + return 0; +} - default: - printf("unknown option %s\n",argv[i]); - moldyn_usage(argv); - return -1; - } - } else { - moldyn_usage(argv); - return -1; - } - } +int set_cutoff(t_moldyn *moldyn,double cutoff) { + + moldyn->cutoff=cutoff; return 0; } -int moldyn_log_init(t_moldyn *moldyn) { +int set_temperature(t_moldyn *moldyn,double t) { + + moldyn->t=t; + + return 0; +} - moldyn->lvstat=0; - t_visual *vis; +int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { - vis=&(moldyn->vis); + moldyn->dim.x=x; + moldyn->dim.y=y; + moldyn->dim.z=z; - if(moldyn->ewrite) { - moldyn->efd=open(moldyn->efb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->efd<0) { - perror("[moldyn] efd open"); - return moldyn->efd; - } - dprintf(moldyn->efd,"# moldyn total energy logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_E; + if(visualize) { + moldyn->vis.dim.x=x; + moldyn->vis.dim.y=y; + moldyn->vis.dim.z=z; } - if(moldyn->mwrite) { - moldyn->mfd=open(moldyn->mfb,O_WRONLY|O_CREAT|O_TRUNC); - if(moldyn->mfd<0) { - perror("[moldyn] mfd open"); - return moldyn->mfd; - } - dprintf(moldyn->mfd,"# moldyn total momentum logfile\n"); - moldyn->lvstat|=MOLDYN_LVSTAT_TOTAL_M; - } + return 0; +} - if(moldyn->swrite) - moldyn->lvstat|=MOLDYN_LVSTAT_SAVE; +int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { - if((moldyn->vwrite)&&(vis)) { - moldyn->visual=vis; - visual_init(vis,moldyn->vfb); - moldyn->lvstat|=MOLDYN_LVSTAT_VISUAL; - } + if(x) + moldyn->status|=MOLDYN_STAT_PBX; + + if(y) + moldyn->status|=MOLDYN_STAT_PBY; - moldyn->lvstat|=MOLDYN_LVSTAT_INITIALIZED; + if(z) + moldyn->status|=MOLDYN_STAT_PBZ; return 0; } -int moldyn_log_shutdown(t_moldyn *moldyn) { +int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { - if(moldyn->efd) close(moldyn->efd); - if(moldyn->mfd) close(moldyn->efd); - if(moldyn->dfd) close(moldyn->efd); - if(moldyn->visual) visual_tini(moldyn->visual); + moldyn->func1b=func; + moldyn->pot1b_params=params; return 0; } -int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { +int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { - int ret; + moldyn->func2b=func; + moldyn->pot2b_params=params; - ret=moldyn_parse_argv(moldyn,argc,argv); - if(ret<0) return ret; + return 0; +} - ret=moldyn_log_init(moldyn); - if(ret<0) return ret; +int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { - rand_init(&(moldyn->random),NULL,1); - moldyn->random.status|=RAND_STAT_VERBOSE; + moldyn->func3b=func; + moldyn->pot3b_params=params; - moldyn->status=0; + return 0; +} + +int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) { + + switch(type) { + case LOG_TOTAL_ENERGY: + moldyn->ewrite=timer; + moldyn->efd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->efd<0) { + perror("[moldyn] efd open"); + return moldyn->efd; + } + dprintf(moldyn->efd,"# total energy log file\n"); + break; + case LOG_TOTAL_MOMENTUM: + moldyn->mwrite=timer; + moldyn->mfd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + if(moldyn->mfd<0) { + perror("[moldyn] mfd open"); + return moldyn->mfd; + } + dprintf(moldyn->efd,"# total momentum log file\n"); + break; + case SAVE_STEP: + moldyn->swrite=timer; + strncpy(moldyn->sfb,fb,63); + break; + case VISUAL_STEP: + moldyn->vwrite=timer; + strncpy(moldyn->vfb,fb,63); + visual_init(&(moldyn->vis),fb); + break; + default: + printf("unknown log mechanism: %02x\n",type); + return -1; + } return 0; } -int moldyn_shutdown(t_moldyn *moldyn) { +int moldyn_log_shutdown(t_moldyn *moldyn) { - moldyn_log_shutdown(moldyn); - rand_close(&(moldyn->random)); - free(moldyn->atom); + if(moldyn->efd) close(moldyn->efd); + if(moldyn->mfd) close(moldyn->mfd); + if(moldyn->visual) visual_tini(moldyn->visual); return 0; } -int create_lattice(unsigned char type,int element,double mass,double lc, - int a,int b,int c,t_atom **atom) { +int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, + u8 attr,u8 bnum,int a,int b,int c) { int count; int ret; t_3dvec origin; + t_atom *atom; count=a*b*c; + atom=moldyn->atom; if(type==FCC) count*=4; + if(type==DIAMOND) count*=8; - *atom=malloc(count*sizeof(t_atom)); - if(*atom==NULL) { + atom=malloc(count*sizeof(t_atom)); + if(atom==NULL) { perror("malloc (atoms)"); return -1; } @@ -254,10 +202,10 @@ int create_lattice(unsigned char type,int element,double mass,double lc, switch(type) { case FCC: - ret=fcc_init(a,b,c,lc,*atom,&origin); + ret=fcc_init(a,b,c,lc,atom,&origin); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,*atom,&origin); + ret=diamond_init(a,b,c,lc,atom,&origin); break; default: printf("unknown lattice type (%02x)\n",type); @@ -272,18 +220,49 @@ int create_lattice(unsigned char type,int element,double mass,double lc, return -1; } + moldyn->count=count; + while(count) { - (*atom)[count-1].element=element; - (*atom)[count-1].mass=mass; + atom[count-1].element=element; + atom[count-1].mass=mass; + atom[count-1].attr=attr; + atom[count-1].bnum=bnum; count-=1; } return ret; } -int destroy_lattice(t_atom *atom) { +int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, + t_3dvec *r,t_3dvec *v) { + + t_atom *atom; + void *ptr; + int count; + + atom=moldyn->atom; + count=++(moldyn->count); + + ptr=realloc(atom,count*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (add atom)"); + return -1; + } + moldyn->atom=ptr; + + atom=moldyn->atom; + atom->r=*r; + atom->v=*v; + atom->element=element; + atom->bnum=bnum; + atom->attr=attr; + + return 0; +} + +int destroy_atoms(t_moldyn *moldyn) { - if(atom) free(atom); + if(moldyn->atom) free(moldyn->atom); return 0; } @@ -357,18 +336,18 @@ int scale_velocity(t_moldyn *moldyn) { return 0; } -double get_e_kin(t_atom *atom,int count) { +double get_e_kin(t_moldyn *moldyn) { int i; - double e; + t_atom *atom; - e=0.0; + atom=moldyn->atom; + moldyn->ekin=0.0; - for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - return e; + return moldyn->ekin; } double get_e_pot(t_moldyn *moldyn) { @@ -376,23 +355,26 @@ double get_e_pot(t_moldyn *moldyn) { return moldyn->energy; } -double get_total_energy(t_moldyn *moldyn) { +double update_e_kin(t_moldyn *moldyn) { - double e; + return(get_e_kin(moldyn)); +} - e=get_e_kin(moldyn->atom,moldyn->count); - e+=get_e_pot(moldyn); +double get_total_energy(t_moldyn *moldyn) { - return e; + return(moldyn->ekin+moldyn->energy); } -t_3dvec get_total_p(t_atom *atom, int count) { +t_3dvec get_total_p(t_moldyn *moldyn) { t_3dvec p,p_total; int i; + t_atom *atom; + + atom=moldyn->atom; v3_zero(&p_total); - for(i=0;icount;i++) { v3_scale(&p,&(atom[i].v),atom[i].mass); v3_add(&p_total,&p_total,&p); } @@ -423,11 +405,11 @@ int link_cell_init(t_moldyn *moldyn) { t_linkcell *lc; int i; + int fd; - lc=&(moldyn->lc); + fd=open("/dev/null",O_WRONLY); - /* list log fd */ - lc->listfd=open("/dev/null",O_WRONLY); + lc=&(moldyn->lc); /* partitioning the md cell */ lc->nx=moldyn->dim.x/moldyn->cutoff; @@ -440,11 +422,11 @@ int link_cell_init(t_moldyn *moldyn) { lc->cells=lc->nx*lc->ny*lc->nz; lc->subcell=malloc(lc->cells*sizeof(t_list)); - printf("initializing linked cells (%d)\n",lc->cells); + printf("[moldyn] initializing linked cells (%d)\n",lc->cells); for(i=0;icells;i++) //list_init(&(lc->subcell[i]),1); - list_init(&(lc->subcell[i])); + list_init(&(lc->subcell[i]),fd); link_cell_update(moldyn); @@ -468,7 +450,7 @@ int link_cell_update(t_moldyn *moldyn) { for(i=0;icells;i++) list_destroy(&(moldyn->lc.subcell[i])); - for(count=0;countcount;count++) { + for(count=0;countcount;count++) { i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; @@ -487,7 +469,7 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { int ci,cj,ck; int nx,ny,nz; int x,y,z; - unsigned char bx,by,bz; + u8 bx,by,bz; lc=&(moldyn->lc); nx=lc->nx; @@ -547,8 +529,42 @@ int link_cell_shutdown(t_moldyn *moldyn) { for(i=0;inx*lc->ny*lc->nz;i++) list_shutdown(&(moldyn->lc.subcell[i])); - if(lc->listfd) close(lc->listfd); + return 0; +} + +int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { + + int count; + void *ptr; + t_moldyn_schedule *schedule; + + schedule=&(moldyn->schedule); + count=++(schedule->content_count); + + ptr=realloc(moldyn->schedule.runs,count*sizeof(int)); + if(!ptr) { + perror("[moldyn] realloc (runs)"); + return -1; + } + moldyn->schedule.runs=ptr; + moldyn->schedule.runs[count-1]=runs; + + ptr=realloc(schedule->tau,count*sizeof(double)); + if(!ptr) { + perror("[moldyn] realloc (tau)"); + return -1; + } + moldyn->schedule.tau=ptr; + moldyn->schedule.tau[count-1]=tau; + + return 0; +} + +int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { + moldyn->schedule.hook=hook; + moldyn->schedule.hook_params=hook_params; + return 0; } @@ -562,13 +578,16 @@ int link_cell_shutdown(t_moldyn *moldyn) { int moldyn_integrate(t_moldyn *moldyn) { - int i; - unsigned int e,m,s,d,v; + int i,sched; + unsigned int e,m,s,v; t_3dvec p; + t_moldyn_schedule *schedule; int fd; char fb[128]; + schedule=&(moldyn->schedule); + /* initialize linked cell method */ link_cell_init(moldyn); @@ -576,38 +595,49 @@ int moldyn_integrate(t_moldyn *moldyn) { e=moldyn->ewrite; m=moldyn->mwrite; s=moldyn->swrite; - d=moldyn->dwrite; v=moldyn->vwrite; - if(!(moldyn->lvstat&MOLDYN_LVSTAT_INITIALIZED)) { - printf("[moldyn] warning, lv system not initialized\n"); - return -1; - } - /* sqaure of some variables */ moldyn->tau_square=moldyn->tau*moldyn->tau; moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; /* calculate initial forces */ - moldyn->potential_force_function(moldyn); + potential_force_calc(moldyn); + + /* zero absolute time */ + moldyn->time=0.0; + + for(sched=0;schedschedule.content_count;sched++) { + + /* setting amount of runs and finite time step size */ + moldyn->tau=schedule->tau[sched]; + moldyn->tau_square=moldyn->tau*moldyn->tau; + moldyn->time_steps=schedule->runs[sched]; + + /* integration according to schedule */ for(i=0;itime_steps;i++) { /* integration step */ moldyn->integrate(moldyn); + /* increase absolute time */ + moldyn->time+=moldyn->tau; + /* check for log & visualization */ if(e) { if(!(i%e)) dprintf(moldyn->efd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f %.45f %.45f\n", + moldyn->time,update_e_kin(moldyn), + moldyn->energy, get_total_energy(moldyn)); } if(m) { if(!(i%m)) { - p=get_total_p(moldyn->atom,moldyn->count); + p=get_total_p(moldyn); dprintf(moldyn->mfd, - "%.15f %.45f\n",i*moldyn->tau, + "%.15f %.45f\n",moldyn->time, v3_norm(&p)); } } @@ -627,12 +657,19 @@ int moldyn_integrate(t_moldyn *moldyn) { } if(v) { if(!(i%v)) { - visual_atoms(moldyn->visual,i*moldyn->tau, + visual_atoms(&(moldyn->vis),moldyn->time, moldyn->atom,moldyn->count); - printf("\rsteps: %d",i); + printf("\rsched: %d, steps: %d",sched,i); fflush(stdout); } } + + } + + /* check for hooks */ + if(schedule->hook) + schedule->hook(moldyn,schedule->hook_params); + } return 0; @@ -666,15 +703,11 @@ int velocity_verlet(t_moldyn *moldyn) { } /* neighbour list update */ -printf("list update ...\n"); link_cell_update(moldyn); -printf("done\n"); /* forces depending on chosen potential */ -printf("calc potential/force ...\n"); potential_force_calc(moldyn); //moldyn->potential_force_function(moldyn); -printf("done\n"); for(i=0;idim.x/2)/lc->x,\ - (atom[i].r.y+moldyn->dim.y/2)/lc->y,\ - (atom[i].r.z+moldyn->dim.z/2)/lc->z,\ - nb_list); - - int potential_force_calc(t_moldyn *moldyn) { - int i,count; - t_atom *atom; + int i,j,k,count; + t_atom *atom,*btom,*ktom; t_linkcell *lc; t_list neighbour[27]; - t_list *this; - double u; + t_list *this,*thisk,*neighbourk; + u8 bc,bck; + int countn,dnlc; count=moldyn->count; atom=moldyn->atom; lc=&(moldyn->lc); /* reset energy */ - u=0.0; + moldyn->energy=0.0; for(i=0;istatus&MOLDYN_STAT_1BP) - moldyn->pf_func1b(moldyn,&(atom[i])); + if(atom[i].attr&ATOM_ATTR_1BP) + moldyn->func1b(moldyn,&(atom[i])); /* 2 body pair potential/force */ - if(moldyn->status&MOLDYN_STAT_2BP) { + if(atom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { - CREATE_CELL_LIST(neighbour); - - /* - * processing cell of atom i - * => no need to check for empty list - * (1 element at minimum) - */ - - this=&(neighbour[0]); - list_reset(this); - do { - btom=this->current->data; - if(btom!=&(atom[i])) - moldyn->pf_func2b(moldyn, - &(atom[i]),btom); - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - /* - * direct neighbour cells - * => no boundary condition check necessary - */ - for(j=0;jdnlc;j++) { - this=&(neighbour[j]); - list_reset(this); - if(this->start!=NULL) { - do { - btom=this->current->data; - moldyn->pf_func2b(moldyn, - &(atom[i]), - btom); - } while(list_next(this)!=\ - L_NO_NEXT_ELEMENT); - } + link_cell_neighbour_index(moldyn, + (atom[i].r.x+moldyn->dim.x/2)/lc->x, + (atom[i].r.y+moldyn->dim.y/2)/lc->y, + (atom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour); - /* - * neighbour cells due to periodic bc - * => check boundary conditions - */ - for(j=lc->dnlc;jcountn;j++) { - this=&(neighbour[j]); - list_reset(this); - if(this->start!=NULL) { - do { - btom=this->current->data; - moldyn->pf_func2b(moldyn, - &(atom[i]), - btom); + countn=lc->countn; + dnlc=lc->dnlc; - } + for(j=0;jstart==NULL) + continue; - params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - sc=params->spring_constant; - equi_dist=params->equilibrium_distance; - count=moldyn->count; + bc=(jcurrent->data; - for(i=0;idim.x/2))/lc->x; - nj=(atom[i].r.y+(moldyn->dim.y/2))/lc->y; - nk=(atom[i].r.z+(moldyn->dim.z/2))/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* - * processing cell of atom i - * => no need to check for empty list (1 element at minimum) - */ - this=&(neighbour[0]); - list_reset(this); - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f),&force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - /* - * direct neighbour cells - * => no boundary condition check necessary - */ - for(j=1;jstart!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + if((btom->attr&ATOM_ATTR_2BP)& + (atom[i].attr&ATOM_ATTR_2BP)) + moldyn->func2b(moldyn, + &(atom[i]), + btom, + bc); - } - } + /* 3 body potential/force */ - /* - * indirect neighbour cells - * => check boundary conditions - */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ - if(this->start!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - u+=(0.5*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance, - -sc*(1.0-(equi_dist/d))); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + if(!(atom[i].attr&ATOM_ATTR_3BP)|| + !(btom->attr&ATOM_ATTR_3BP)) + continue; - } - } - } + link_cell_neighbour_index(moldyn, + (btom->r.x+moldyn->dim.x/2)/lc->x, + (btom->r.y+moldyn->dim.y/2)/lc->y, + (btom->r.z+moldyn->dim.z/2)/lc->z, + neighbourk); - moldyn->energy=0.5*u; + for(k=0;kcountn;k++) { - return 0; -} + thisk=&(neighbourk[k]); + list_reset(thisk); + + if(thisk->start==NULL) + continue; -/* lennard jones potential & force for one sort of atoms */ - -int lennard_jones(t_moldyn *moldyn) { + bck=(kdnlc)?0:1; - t_lj_params *params; - t_atom *atom,*btom; - t_linkcell *lc; - t_list *this,neighbour[27]; - int i,j,c; - int count; - t_3dvec force,distance; - double d,h1,h2,u; - double eps,sig6,sig12; - int ni,nj,nk; + do { - params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - count=moldyn->count; - eps=params->epsilon4; - sig6=params->sigma6; - sig12=params->sigma12; + ktom=thisk->current->data; - /* reset energy counter */ - u=0.0; + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; - for(i=0;idim.x/2))/lc->x; - nj=(atom[i].r.y+(moldyn->dim.y/2))/lc->y; - nk=(atom[i].r.z+(moldyn->dim.z/2))/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* processing cell of atom i */ - this=&(neighbour[0]); - list_reset(this); /* list has 1 element at minimum */ - do { - btom=this->current->data; - if(btom==&(atom[i])) + if(ktom==&(atom[i])) continue; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_absolute_square(&distance); /* 1/r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h2=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=+h1-h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f),&force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - /* neighbours not doing boundary condition overflow */ - for(j=1;jstart!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h2=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=+h1-h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); - - } - } - /* neighbours due to boundary conditions */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); /* check boundary conditions */ - if(this->start!=NULL) { - - do { - btom=this->current->data; - v3_sub(&distance,&(atom[i].r),&(btom->r)); - v3_per_bound(&distance,&(moldyn->dim)); - d=v3_absolute_square(&distance); /* r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h2=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - u+=eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=+h1-h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + moldyn->func3b(moldyn,&(atom[i]),btom,ktom,bck); + } while(list_next(thisk)!=\ + L_NO_NEXT_ELEMENT); + + } + + } while(list_next(this)!=L_NO_NEXT_ELEMENT); } } } - moldyn->energy=0.5*u; - return 0; } -/* tersoff potential & force for 2 sorts of atoms */ - -int tersoff(t_moldyn *moldyn) { - - t_tersoff_params *params; - t_atom *atom,*btom,*ktom; - t_linkcell *lc; - t_list *this,*thisk,neighbour[27],neighbourk[27]; - int i,j,k,c,ck; - int count; - double u; - int ni,nj,nk; - int ki,kj,kk; - +/* + * periodic boundayr checking + */ - params=moldyn->pot_params; - atom=moldyn->atom; - lc=&(moldyn->lc); - count=moldyn->count; +int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { - /* reset energy counter */ - u=0.0; + double x,y,z; + t_3dvec *dim; - for(i=0;idim); - /* determin cell neighbours */ - ni=(atom[i].r.x+(moldyn->dim.x/2))/lc->x; - nj=(atom[i].r.y+(moldyn->dim.y/2))/lc->y; - nk=(atom[i].r.z+(moldyn->dim.z/2))/lc->z; - c=link_cell_neighbour_index(moldyn,ni,nj,nk,neighbour); - - /* - * processing cell of atom i - * => no need to check for empty list (1 element at minimum) - */ - this=&(neighbour[0]); - list_reset(this); - do { - btom=this->current->data; - if(btom==&(atom[i])) - continue; + x=0.5*dim->x; + y=0.5*dim->y; + z=0.5*dim->z; - /* 2 body stuff */ - - /* we need: f_c, df_c, f_r, df_r */ - - v3_sub(&dist_ij,btom,&(atom[i])); - d_ij=v3_norm(&dist_ij); - if(d_ij<=S) { - - /* determine the tersoff parameters */ - if(atom[i].element!=btom->element) { - S=sqrt(TERSOFF_S[e1]*TERSOFF_S[e2]); - R=R_m; - A=; - lambda=; - B=; - mu=; - chi=; - beta=; - betaN=; - - if(d_ij<=R) { - df_r=-lambda*A*exp(-lambda*d_ij)/d_ij; - v3_scale(&force,&dist_ij,df_r); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - else { - s_r=S-R; - arg1=PI*(d_ij-R)/s_r; - f_c=0.5+0.5*cos(arg1); - df_c=-0.5*sin(arg1)*(PI/(s_r*d_ij)); - f_r=A*exp(-lambda*d_ij); - df_r=-lambda*f_r/d_ij; - scale=df_c*f_r+df_r*f_c; - v3_scale(&force,&dist_ij,scale); - v3_add(&(atom[i].f),&(atom[i].f), - &force); - } - } - else - continue; - - - /* end 2 body stuff */ - - /* determine cell neighbours of btom */ - ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; - kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; - kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; - ck=link_cell_neighbour_index(moldyn,ki,kj,kk, - neighbourk); - - /* go for zeta - 3 body stuff! */ - zeta=0.0; - d_ij2=d_ij*d_ij; - - /* cell of btom */ - thisk=&(neighbourk[0]); - list_reset(thisk); - do { - ktom=thisk->current->data; - if(ktom==btom) - continue; - if(ktom==&(atom[i])) - continue; - - /* 3 body stuff (1) */ - - v3_sub(&dist_ik,ktom,&(atom[i])); - d_ik=v3_norm(&dist_ik); - if(d_ik<=Sik) { - - Rik=; - Sik=; - Aik=; - lambda_ik=; - Bik=; - mu_ik=; - omega_ik=; - c_i=; - d_i=; - h_i=; - - - if(d_ik<=Rik) { - f_cik=1.0; - df_cik=0.0; - } - else { - sik_rik=Sik-Rik; - arg1ik=PI*(d_ik-Rik)/sik_rik; - f_cik=0.5+0.5*cos(arg1ik); - df_cik=-0.5*sin(arg1ik)* \ - (PI/(sik_rik*d_ik)); - f_rik=Aik*exp(-lambda_ik*d_ik); - f_aik=-Bik*exp(-mu_ik*d_ik); - } - - v3_sub(&distance_jk,ktom,btom); - cos_theta=(d_ij2+d_ik*d_ik-d_jk*d_jk)/\ - (2*d_ij*d_ik); - sin_theta=sqrt(1.0/\ - (cos_theta*cos_theta)); - theta=arccos(cos_theta); - - - } - else - continue; - - /* end 3 body stuff (1) */ - - - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); - - /* direct neighbours of btom cell */ - for(k=1;kstart!=NULL) { - - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; - - /* 3 body stuff (2) */ - - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); - - } - } - - /* indirect neighbours of btom cell */ - for(k=ck;k<27;k++) { - thisk=&(neighbourk[k]); - list_reset(thisk); - if(thisk->start!=NULL) { - - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + if(moldyn->status&MOLDYN_STAT_PBX) { + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; + } + if(moldyn->status&MOLDYN_STAT_PBY) { + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + } + if(moldyn->status&MOLDYN_STAT_PBZ) { + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + } - /* 3 body stuff */ + return 0; +} + - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); +/* + * example potentials + */ - } - } +/* harmonic oscillator potential and force */ +int harmonic_oscillator(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + t_ho_params *params; + t_3dvec force,distance; + double d; + double sc,equi_dist; - /* - * direct neighbour cells of atom i - */ - for(j=1;jstart!=NULL) { + params=moldyn->pot2b_params; + sc=params->spring_constant; + equi_dist=params->equilibrium_distance; - do { - btom=this->current->data; + v3_sub(&distance,&(ai->r),&(aj->r)); + + v3_per_bound(&distance,&(moldyn->dim)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_norm(&distance); + if(d<=moldyn->cutoff) { + /* energy is 1/2 (d-d0)^2, but we will add this twice ... */ + moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist)); + v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); + v3_add(&(ai->f),&(ai->f),&force); + } - /* 2 body stuff */ + return 0; +} +/* lennard jones potential & force for one sort of atoms */ + +int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { - /* determine cell neighbours of btom */ - ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; - kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; - kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; - ck=link_cell_neighbour_index(moldyn,ki,kj,kk, - neighbourk); + t_lj_params *params; + t_3dvec force,distance; + double d,h1,h2; + double eps,sig6,sig12; - /* cell of btom */ - thisk=&(neighbourk[0]); - list_reset(thisk); - do { - ktom=thisk->current->data; - if(ktom==btom) - continue; - if(ktom==&(atom[i])) - continue; - - /* 3 body stuff (1) */ + params=moldyn->pot2b_params; + eps=params->epsilon4; + sig6=params->sigma6; + sig12=params->sigma12; - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + v3_sub(&distance,&(ai->r),&(aj->r)); + if(bc) check_per_bound(moldyn,&distance); + d=v3_absolute_square(&distance); /* 1/r^2 */ + if(d<=moldyn->cutoff_square) { + d=1.0/d; /* 1/r^2 */ + h2=d*d; /* 1/r^4 */ + h2*=d; /* 1/r^6 */ + h1=h2*h2; /* 1/r^12 */ + /* energy is eps*..., but we will add this twice ... */ + moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2); + h2*=d; /* 1/r^8 */ + h1*=d; /* 1/r^14 */ + h2*=6*sig6; + h1*=12*sig12; + d=+h1-h2; + d*=eps; + v3_scale(&force,&distance,d); + v3_add(&(ai->f),&(aj->f),&force); + } - /* direct neighbours of btom cell */ - for(k=1;kstart!=NULL) { + return 0; +} - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; +/* + * tersoff potential & force for 2 sorts of atoms + */ - /* 3 body stuff (2) */ +/* tersoff 1 body part */ +int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + int num; + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + + num=ai->bnum; + params=moldyn->pot1b_params; + exchange=&(params->exchange); - } - } + /* + * simple: point constant parameters only depending on atom i to + * their right values + */ - /* indirect neighbours of btom cell */ - for(k=ck;k<27;k++) { - thisk=&(neighbourk[k]); - list_reset(thisk); - if(thisk->start!=NULL) { + exchange->beta=&(params->beta[num]); + exchange->n=&(params->n[num]); + exchange->c=&(params->c[num]); + exchange->d=&(params->d[num]); + exchange->h=&(params->h[num]); - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + exchange->betan=pow(*(exchange->beta),*(exchange->n)); + exchange->c2=params->c[num]*params->c[num]; + exchange->d2=params->d[num]*params->d[num]; + exchange->c2d2=exchange->c2/exchange->d2; - /* 3 body stuff (3) */ + return 0; +} + +/* tersoff 2 body part */ +int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,force; + double d_ij; + double A,B,R,S,lambda,mu; + double f_r,df_r; + double f_c,df_c; + int num; + double s_r; + double arg; + double scale; + + params=moldyn->pot2b_params; + num=ai->bnum; + exchange=&(params->exchange); + + exchange->run3bp=0; + + /* + * we need: f_c, df_c, f_r, df_r + * + * therefore we need: R, S, A, lambda + */ - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + v3_sub(&dist_ij,&(ai->r),&(aj->r)); - } - } + if(bc) check_per_bound(moldyn,&dist_ij); + /* save for use in 3bp */ /* REALLY ?!?!?! */ + exchange->dist_ij=dist_ij; - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + /* constants */ + if(num==aj->bnum) { + S=params->S[num]; + R=params->R[num]; + A=params->A[num]; + lambda=params->lambda[num]; + /* more constants depending of atoms i and j, needed in 3bp */ + params->exchange.B=&(params->B[num]); + params->exchange.mu=&(params->mu[num]); + mu=params->mu[num]; + params->exchange.chi=1.0; + } + else { + S=params->Smixed; + R=params->Rmixed; + A=params->Amixed; + lambda=params->lambda_m; + /* more constants depending of atoms i and j, needed in 3bp */ + params->exchange.B=&(params->Bmixed); + params->exchange.mu=&(params->mu_m); + mu=params->mu_m; + params->exchange.chi=params->chi; + } - } - } + d_ij=v3_norm(&dist_ij); - /* - * indirect neighbour cells of atom i - */ - for(j=c;j<27;j++) { - this=&(neighbour[j]); - list_reset(this); - if(this->start!=NULL) { - - do { - btom=this->current->data; - - /* 2 body stuff */ - - - /* determine cell neighbours of btom */ - ki=(btom->r.x+(moldyn->dim.x/2))/lc->x; - kj=(btom->r.y+(moldyn->dim.y/2))/lc->y; - kk=(btom->r.z+(moldyn->dim.z/2))/lc->z; - ck=link_cell_neighbour_index(moldyn,ki,kj,kk, - neighbourk); - - /* cell of btom */ - thisk=&(neighbourk[0]); - list_reset(thisk); - do { - ktom=thisk->current->data; - if(ktom==btom) - continue; - if(ktom==&(atom[i])) - continue; - - /* 3 body stuff (1) */ + /* save for use in 3bp */ + exchange->d_ij=d_ij; - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + if(d_ij>S) + return 0; - /* direct neighbours of btom cell */ - for(k=1;kstart!=NULL) { + f_r=A*exp(-lambda*d_ij); + df_r=-lambda*f_r/d_ij; - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + /* f_a, df_a calc + save for 3bp use */ + exchange->f_a=-B*exp(-mu*d_ij); + exchange->df_a=-mu*exchange->f_a/d_ij; - /* 3 body stuff (2) */ + if(d_ijf),&(ai->f),&force); + /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ + moldyn->energy+=(0.25*f_r*f_c); - } - } + /* save for use in 3bp */ + exchange->f_c=f_c; + exchange->df_c=df_c; - /* indirect neighbours of btom cell */ - for(k=ck;k<27;k++) { - thisk=&(neighbourk[k]); - list_reset(thisk); - if(thisk->start!=NULL) { + /* enable the run of 3bp function */ + exchange->run3bp=1; - do { - ktom=thisk->current->data; - if(ktom==&(atom[i])) - continue; + return 0; +} - /* 3 body stuff (3) */ +/* tersoff 3 body part */ + +int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { + + t_tersoff_mult_params *params; + t_tersoff_exchange *exchange; + t_3dvec dist_ij,dist_ik,dist_jk; + t_3dvec temp,force; + double R,S,s_r; + double d_ij,d_ij2,d_ik,d_jk; + double f_c,df_c,b_ij,f_a,df_a; + double f_c_ik,df_c_ik,arg; + double scale; + double chi; + double n,c,d,h,beta,betan; + double c2,d2,c2d2; + double numer,denom; + double theta,cos_theta,sin_theta; + double d_theta,d_theta1,d_theta2; + double h_cos,h_cos2,d2_h_cos2; + double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n; + double bracket3,bracket3_pow_1,bracket3_pow; + int num; + + params=moldyn->pot3b_params; + num=ai->bnum; + exchange=&(params->exchange); + + if(!(exchange->run3bp)) + return 0; - } while(list_next(thisk)!=L_NO_NEXT_ELEMENT); + /* + * we need: f_c, d_fc, b_ij, db_ij, f_a, df_a + * + * we got f_c, df_c, f_a, df_a from 2bp calculation + */ - } - } + d_ij=exchange->d_ij; + d_ij2=exchange->d_ij2; + f_a=params->exchange.f_a; + df_a=params->exchange.df_a; + + /* d_ij is <= S, as we didn't return so far! */ - } while(list_next(this)!=L_NO_NEXT_ELEMENT); + /* + * calc of b_ij (scalar) and db_ij (vector) + * + * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta + * + * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik, + * w_ik, + * + */ - } - } - + + v3_sub(&dist_ik,&(ai->r),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_ik); + d_ik=v3_norm(&dist_ik); + + /* constants for f_c_ik calc */ + if(num==ak->bnum) { + R=params->R[num]; + S=params->S[num]; + } + else { + R=params->Rmixed; + S=params->Smixed; } - moldyn->energy=0.5*u; + /* calc of f_c_ik */ + if(d_ik>S) + return 0; + if(d_ikr),&(ak->r)); + if(bc) check_per_bound(moldyn,&dist_jk); + d_jk=v3_norm(&dist_jk); + + beta=*(exchange->beta); + betan=exchange->betan; + n=*(exchange->n); + c=*(exchange->c); + d=*(exchange->d); + h=*(exchange->h); + c2=exchange->c2; + d2=exchange->d2; + c2d2=exchange->c2d2; + + numer=d_ij2+d_ik*d_ik-d_jk*d_jk; + denom=2*d_ij*d_ik; + cos_theta=numer/denom; + sin_theta=sqrt(1.0-(cos_theta*cos_theta)); + theta=acos(cos_theta); + d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom); + d_theta1=2*denom-numer*2*d_ik/d_ij; + d_theta2=2*denom-numer*2*d_ij/d_ik; + d_theta1*=d_theta; + d_theta2*=d_theta; + + h_cos=(h-cos_theta); + h_cos2=h_cos*h_cos; + d2_h_cos2=d2-h_cos2; + + /* some usefull expressions */ + frac1=c2/(d2-h_cos2); + bracket1=1+c2d2-frac1; + bracket2=f_c_ik*bracket1; + bracket2_n_1=pow(bracket2,n-1.0); + bracket2_n=bracket2_n_1*bracket2; + bracket3=1+betan*bracket2_n; + bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0); + bracket3_pow=bracket3_pow_1*bracket3; + + /* now go on with calc of b_ij and derivation of b_ij */ + b_ij=chi*bracket3_pow; + + /* derivation of theta */ + v3_scale(&force,&dist_ij,d_theta1); + v3_scale(&temp,&dist_ik,d_theta2); + v3_add(&force,&force,&temp); + + /* part 1 of derivation of b_ij */ + v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1); + + /* part 2 of derivation of b_ij */ + v3_scale(&temp,&dist_ik,df_c_ik*bracket1); + + /* sum up and scale ... */ + v3_add(&temp,&temp,&force); + scale=bracket2_n_1*n*betan*(1+betan*bracket3_pow_1)*chi*(1.0/(2.0*n)); + v3_scale(&temp,&temp,scale); + + /* now construct an energy and a force out of that */ + v3_scale(&temp,&temp,f_a); + v3_scale(&force,&dist_ij,df_a*b_ij); + v3_add(&temp,&temp,&force); + v3_scale(&temp,&temp,f_c); + v3_scale(&force,&dist_ij,df_c*b_ij*f_a); + v3_add(&force,&force,&temp); + + /* add forces */ + v3_add(&(ai->f),&(ai->f),&force); + /* energy is 0.5 f_r f_c, but we will sum it up twice ... */ + moldyn->energy+=(0.25*f_a*b_ij*f_c); + return 0; }