]> www.hackdaworld.org Git - lectures/latex.git/blob - nlsop/poster/nlsop_ibmm2006_ver2.tex
some fixes
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006_ver2.tex
1 \documentclass[portrait,a0b,final]{a0poster}
2 \usepackage{epsf,psfig,pstricks,multicol,pst-grad,color}
3 \usepackage{graphicx,amsmath,amssymb}
4 \graphicspath{{../img/}}
5 \usepackage[german]{babel}
6
7 \begin{document}
8
9 % Fliessenden Hintergrund von RGB-Farbe 1. .98 .98 nach 1. .85 .85
10 % und wieder nach  1. .98 .98 (1. .85 .85 wird nach 0.1=10% des Hinter-
11 % grunds angenommen)
12 % Achtung Werte unter .8 verbrauchen zu viel Tinte!!!
13
14 %\background{.95 .95 1.}{.78 .78 1.}{0.05}
15 \background{.50 .50 .50}{.85 .85 .85}{0.5}
16 %\newrgbcolor{blue1}{.9 .9 1.}
17
18 % Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite
19 \renewcommand{\columnfrac}{.31}
20
21 % header
22 \vspace{-1cm}
23 \begin{header}
24   \begin{minipage} {.13\textwidth}
25         \includegraphics[height=11cm]{uni-logo.eps}
26   \end{minipage} \hfill
27   \begin{minipage}   {.73\textwidth}
28      \centerline{{\Huge \bfseries Monte Carlo simulation study of a selforganisation}}
29      \centerline{{\Huge \bfseries process leading to ordered precipitate structures}}
30      \vspace*{1cm}
31      \centerline{\huge\textsc {\underline{F.~Zirkelbach}}, M.~H"aberlen,
32                                J.~K.~N.~Lindner, B.~Stritzker}
33      \vspace*{1cm}
34      \centerline{\Large Institut f"ur Physik, Universit"at Augsburg,
35                         D-86135 Augsburg, Germany}
36   \end{minipage} \hfill
37   \begin{minipage} {.13\textwidth}
38       \includegraphics[height=10cm]{Lehrstuhl-Logo.eps}
39   \end{minipage} \hfill
40 \end{header}
41
42 \begin{poster}
43
44 \vspace{-1cm}
45 \begin{pcolumn}
46   \begin{pbox}
47     \section*{Motivation}
48         {\bf
49         Experimentally observerd seflorganisation process at high-dose carbon
50         implantations under certain implantation conditions.}
51         \begin{itemize}
52                 \item Spherical and lamellar amorphous inclusions at the upper
53                       a/c interface
54                 \begin{center}
55                         \includegraphics[width=20cm]{k393abild1_e.eps}
56                 \end{center}
57                 Cross section TEM image:\\
58                 $180 \, keV$ $C^+ \rightarrow Si$,
59                 $T=150 \, ^{\circ} \mathrm{C}$,
60                 Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
61                 black/white: crystalline/amorphous material\\
62                 L: amorphous lamellae, S: spherical amorphous inclusions
63                 \item Carbon accumulation in amorphous volumes
64                 \begin{center}
65                         \includegraphics[width=20cm]{eftem.eps}
66                 \end{center}
67                 Brightfield TEM and respective EFTEM image:\\
68                 $180 \, keV$ $C^+ \rightarrow Si$,
69                 $T=200 \, ^{\circ} \mathrm{C}$,
70                 Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
71                 yellow/blue: high/low concentrations of carbon
72         \end{itemize}
73         {\bf
74         Observed for a number of ion/target combinations for which the
75         material undergoes drastic density change upon amorphisation.}\\
76         {\scriptsize
77         A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.\\
78         E. D. Specht et al., Nucl. Instr. and Meth. B 84 (1994) 323.\\
79         M. Ishimaru et al., Nucl. Instr. and Meth. B 166-167 (2000) 390.}
80   \end{pbox}
81   \vspace{-1cm}
82   \begin{pbox}
83     \section*{Model}
84         {\bf
85         Model schematically displaying the formation of ordered lamellae
86         with increasing dose.}
87         \vspace{1cm}
88         \begin{center}
89                 \includegraphics[width=20cm]{modell_ng_e.eps}
90         \end{center}
91         \begin{itemize}
92 \item supersaturation of $C$ in $c-Si$\\
93       $\rightarrow$ {\bf carbon induced} nucleation of spherical
94       $SiC_x$-precipitates
95 \item high interfacial energy between $3C-SiC$ and $c-Si$\\
96       $\rightarrow$ {\bf amourphous} precipitates
97 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
98       $\rightarrow$ {\bf lateral strain} (black arrows)
99 \item implantation range near surface\\
100       $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component}
101 \item reduction of the carbon supersaturation in $c-Si$\\
102       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
103       (white arrows)
104 \item remaining lateral strain\\
105       $\rightarrow$ {\bf strain induced} lateral amorphisation
106         \end{itemize}
107   \end{pbox}
108   \vspace{-1cm}
109   \begin{pbox}
110     \section*{Simulation}
111         \begin{minipage}[t]{0.5\textwidth}
112                 {\bf Discretisation of the target}
113                 \begin{center}
114                         \includegraphics[width=12cm]{gitter_e.eps}
115                 \end{center}
116                 \vspace{2cm}
117                 \begin{itemize}
118                         \item divided into cells with a cube length of $3 \, nm$
119                         \item periodic boundary conditions in $x$,$y$-direction
120                 \end{itemize}
121         \end{minipage}
122         \begin{minipage}[t]{0.5\textwidth}
123                 {\bf TRIM collision statstics}
124                 \begin{center}
125                         \includegraphics[width=12cm]{trim_coll_e.eps}
126                 \end{center}
127                 \begin{itemize}
128                         \item[] $\Rightarrow$ identical depth profiles for
129                                  number of
130                                 collisions per depth and nuclear stopping power
131                         \item[] $\Rightarrow$ mean constant energy loss per
132                                  collision
133                 \end{itemize}
134         \end{minipage}
135   \end{pbox}
136
137
138 \end{pcolumn}
139 \begin{pcolumn}
140
141   \begin{pbox}
142     \section*{Simulation algorithm}
143     {\bf
144     The simulation algorithm consists of the following three parts looped 
145     $s$ times corresponding to a dose $D=s/(64\times64\times(3 \, nm)^2)$:}
146         \subsection*{1. Amorphisation/Recrystallisation}
147         \begin{itemize}
148                 \item random numbers distributed according to
149                       the nuclear energy loss to determine the
150                       volume in which a collision occurs
151                 \item compute local probability for amorphisation:\\
152                       %\vspace{0.1cm}
153
154                       \centerline{\fcolorbox[rgb]{0.,0.,0.}{1.,1.,.8}{
155                       \begin{minipage}{20cm}
156 \[
157  p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
158 \]
159                       \end{minipage}
160                       }}
161                       \vspace{1cm}
162                       and recrystallisation:\\
163                       %\vspace{0.1cm}
164
165                       \centerline{\fcolorbox[rgb]{0.,0.,0.}{1.,1.,.8}{
166                       \begin{minipage}{20cm}
167 \[
168 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
169 \]
170 \[
171 \delta (\vec r) = \left\{
172 \begin{array}{ll}
173         1 & \textrm{if volume at position $\vec r$ is amorphous} \\
174         0 & \textrm{otherwise} \\
175 \end{array}
176 \right.
177 \]
178                       \end{minipage}
179                       }}
180                       \vspace{1cm}
181                 \item loop for the mean amount of hits by the ion
182         \end{itemize}
183         Three contributions to the amorphisation process controlled by:
184         \begin{itemize}
185                 \item {\color{green} $p_b$} normal 'ballistic' amorphisation
186                 \item {\color{blue} $p_c$} carbon induced amorphisation
187                 \item {\color{red} $p_s$} stress enhanced amorphisation
188         \end{itemize}
189         \subsection*{2. Carbon incorporation}
190                 \begin{itemize}
191                         \item random numbers distributed according to
192                               the implantation profile to determine the
193                               incorporation volume
194                         \item increase the amount of carbon atoms in
195                               that volume
196                 \end{itemize}
197         \subsection*{3. Diffusion/Sputtering}
198                 \begin{itemize}
199                         \item every $d_v$ steps transfer $d_r$ of the
200                               carbon atoms of crystalline volumina to
201                               an amorphous neighbour volume
202                         \item do the sputter routine after $n$ steps
203                               corresponding to $3 \, nm$ of substrat
204                               removal
205                 \end{itemize}
206                 {\bf
207                 Simulation parameters $d_v$, $d_r$ and $n$ control the
208                 diffusion and sputtering process.}
209   \end{pbox}
210   \vspace{-1cm}
211   \begin{pbox}
212         \section*{Comparison of experiment and simulation}
213          \begin{center}
214                 \includegraphics[width=25cm]{dosis_entwicklung_ng_e_1-2.eps}
215         \end{center}
216         \begin{center}
217                 \includegraphics[width=25cm]{dosis_entwicklung_ng_e_2-2.eps}
218         \end{center}
219         Simulation parameters:\\
220         $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, $d_v=1 \times 10^6$.
221         \\[0.7cm]{\bf Conclusion:}
222         \begin{itemize}
223                 \item Essentially conforming formation and growth of the
224                       continuous amorphous layer
225                 \item Lamellar precipitates and their evolution at the upper
226                       a/c interface with increasing dose is reproduced
227         \end{itemize}
228         {\bf\color{red} Simulation is able to model the whole
229                         depth region affected by the 
230                         irradiation process}
231   \end{pbox}
232 \end{pcolumn}
233 \begin{pcolumn}
234
235   \begin{pbox}
236         \section*{Structural/compositional information}
237         \begin{minipage}[t]{0.57\textwidth}
238                 \includegraphics[height=15cm=]{ac_cconc_ver2_e.eps}
239                 \begin{itemize}
240                         \item Fluctuation of the carbon concentration in the
241                               region of the lamellae
242                         \item Saturation limit of carbon in c-$Si$ under given
243                               implantation conditions between $8$ and
244                               $10 \, at. \%$
245                 \end{itemize}
246         \end{minipage}
247         \begin{minipage}[t]{0.43\textwidth}
248                 \includegraphics[height=15cm]{97_98_ng_e.eps}
249                 \begin{itemize}
250                         \item Complementarily arranged and alternating sequence
251                               of layers with high and low amount of amorphous
252                               regions
253                         \item Carbon accumulation in the amorphous phase
254                 \end{itemize}
255         \end{minipage}
256   \end{pbox}
257   \vspace{-1cm}
258   \begin{pbox}
259         \section*{Recipe:\\
260                   Thick films of ordered lamellar structure}
261         \begin{minipage}{0.33\textwidth}
262                 {\bf Prerequisites:}\\
263                 Crystalline silicon target with a nearly constant carbon
264                 concentration at $10 \, at. \%$ in a $500 \, nm$ thick
265                 surface layer   
266         \end{minipage}
267         \begin{minipage}{0.65\textwidth}
268                 \begin{center}
269                         \includegraphics[width=15cm]{multiple_impl_cp_e.eps}
270                 \end{center}
271         \end{minipage}
272         {\bf Creation:}
273         \begin{itemize}
274                 \item multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$
275                       $Si$ implantation
276                 \item $T=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation
277         \end{itemize}
278         \vspace{1cm}
279         {\bf Stiring up:}\\[0.5cm]
280         2nd $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ implantation step at
281         $150 \, ^{\circ} \mathrm{C}$
282         \begin{itemize}
283                 \item This does not significantly change the carbon
284                       concentration in the top $500 \, nm$
285                 \item Nearly constant energy loss in the affected depth region
286         \end{itemize}
287         \vspace{1cm}
288         {\bf Result:}
289         \vspace{0.7cm}
290         \begin{center}
291                 \includegraphics[width=25cm]{multiple_impl_e.eps}
292         \end{center}
293         \begin{itemize}
294                 \item Already ordered structures after $100 \times 10^6$ steps
295                       corresponding to a dose of $D=2.7 \times 10^{17} cm^{-2}$
296                 \item More defined structures with increasing dose
297         \end{itemize}
298         {\bf\color{blue} Starting point for materials showing strong\\
299                         photoluminescence}\\
300         {\scriptsize Dihu Chen et al. Opt. Mater. 23 (2003) 65.}
301   \end{pbox}
302   \vspace{-1cm}
303   \begin{pbox}
304         \section*{Conclusions}
305                 \begin{itemize}
306                         \item Observation of self-organised nanometric
307                               precipitates by ion irradiation
308                         \item Model proposed describing the seoforganisation
309                               process
310                         \item Model implemented to a Monte Carlo simulation code
311                         \item Simulation is able to reproduce experimental
312                               observations
313                         \item Modelling of the complete depth region affected
314                               by the irradiation process
315                         \item Precipitation process gets traceable by simulation
316                         \item Detailed structural/compositional information
317                               available by simulation
318                         \item Recipe proposed for the formation of broad
319                               distributions of lamellar structure
320                 \end{itemize}
321   \end{pbox}
322
323 \end{pcolumn}
324 \end{poster}
325 \end{document}
326