]> www.hackdaworld.org Git - lectures/latex.git/blob - nlsop/poster/nlsop_ibmm2006.tex
iadded version 2 (mods to obsolete ver1)
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006.tex
1 \documentclass[10pt]{scrartcl}
2
3 % howto ...
4 %
5 % resize to A0 (900 x 1100 mm) full poster size
6 %        or A4 or Letter size
7
8 % resize factor:
9 %        2*sqrt(2) = 2.828    (for A0)
10 %        2         = 2.00     (for A1) 
11 %
12 %
13 % format definition:
14 %
15 % special format, scaled by 2.82 -> A0
16 %
17 % A4 landscape (?)
18 %
19 %\def\breite{390mm}
20 %\def\hoehe{319.2mm}
21 %\def\anzspalten{4}
22 %
23 % A3 landscape
24 %
25 %\def\breite{420mm}
26 %\def\hoehe{297mm}
27 %\def\anzspalten{4}
28 %
29 % A3 portrait
30 %
31 %\def\breite{297mm}
32 %\def\hoehe{420mm}
33 %\def\anzspalten{3}
34 %
35 % A4 portrait
36 %
37 %\def\breite{210mm}
38 %\def\hoehe{297mm}
39 %\def\anzspalten{2}
40 %
41 % A0 portrait
42 %
43 %\def\breite{841mm}
44 %\def\hoehe{1189mm}
45 %\def\anzspalten{3}
46 %
47 % A0 / 2.82 portrait
48 %
49 \def\breite{298.23mm}
50 \def\hoehe{421.63mm}
51 \def\anzspalten{3}
52 %
53 %
54 %
55 % scaling procedure:
56 %   ./poster_resize poster.ps S
57
58 % european sizes:
59 %   A3: 29.73 x 42.04 cm
60 %   A1: 59.5 x 84.1 cm
61 %   A0: 84.1 x 118.9 cm
62 %
63
64 % packages:
65
66 \usepackage{palatino}
67 \usepackage[latin1]{inputenc}
68 \usepackage{epsf}
69 \usepackage{graphicx,psfrag,color,pstricks,pst-grad}
70 \graphicspath{{../img/}}
71 \usepackage{amsmath,amssymb}
72 \usepackage{latexsym}
73 \usepackage{calc}
74 \usepackage{multicol}
75 \usepackage[german]{babel}
76
77 % numbers, lengths and boxes:
78 %
79 \newsavebox{\dummybox}
80 \newsavebox{\spalten}
81 %
82 \newlength{\bgwidth}\newlength{\bgheight}
83 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
84 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
85 %
86 \newlength{\kastenwidth}
87 %
88 \setlength\paperheight{\hoehe}                                             
89 \setlength\paperwidth{\breite}
90 \special{papersize=\breite,\hoehe}
91 %
92 \topmargin -1in
93 \marginparsep0mm
94 \marginparwidth0mm
95 \headheight0mm
96 \headsep0mm
97 %
98 \setlength{\oddsidemargin}{-2.44cm}
99 \addtolength{\topmargin}{-3mm}
100 \textwidth\paperwidth
101 \textheight\paperheight
102 %
103 \parindent0cm
104 \parskip1.5ex plus0.5ex minus 0.5ex
105 \pagestyle{empty}
106 %
107 \definecolor{recoilcolor}{rgb}{1,0,0}
108 \definecolor{occolor}{rgb}{0,1,0}
109 \definecolor{pink}{rgb}{0,1,1}
110 %
111 \def\UberStil{\normalfont\sffamily\bfseries\large}
112 \def\UnterStil{\normalfont\sffamily\small}
113 \def\LabelStil{\normalfont\sffamily\tiny}
114 \def\LegStil{\normalfont\sffamily\tiny}
115
116 % commands:
117 %
118 \definecolor{JG}{rgb}{0.1,0.9,0.3}
119 %
120 \newenvironment{kasten}{%
121         \begin{lrbox}{\dummybox}%
122         \begin{minipage}{0.96\linewidth}}%
123         {\end{minipage}%
124         \end{lrbox}%
125 \raisebox{-\depth}{\psshadowbox[framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
126 %
127 \newenvironment{spalte}{%
128         \setlength\kastenwidth{1.2\textwidth}
129         \divide\kastenwidth by \anzspalten
130         \begin{minipage}[t]{\kastenwidth}}
131         {\end{minipage}\hfill}
132 %
133 \renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
134 %
135 \def\op#1{\hat{#1}}
136
137 %
138 % the document begins ...
139 %
140 \begin{document}
141
142 % background
143 {\newrgbcolor{gradbegin}{0.1 0.1 0.1}%
144  \newrgbcolor{gradend}{1 1 1}%
145  \psframe[fillstyle=gradient,gradend=gradend,%
146  gradbegin=gradbegin,gradmidpoint=0.5](\bgwidth,-\bgheight)%
147 }
148
149 % header
150 %\vfill
151 \hfill
152 \psshadowbox{\makebox[0.95\textwidth]{%
153         %\hfill
154         \parbox[c]{0.15\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
155         \parbox[c]{0.62\linewidth}{%
156                 \begin{center}
157                         \textbf{\Huge{Monte Carlo simulation study \\
158                                       of a selforganization process \\
159                                       leading to ordered precipitate structures}
160                         }\\[0.7em]
161                         \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen,
162                                        J. K. N. Lindner, B. Stritzker
163                         }\\[0.7em]
164                         {\large Institut f"ur Physik, Universit"at Augsburg,
165                          D-86135 Augsburg, Germany
166                         }
167                 \end{center}
168         }
169         \parbox[c]{0.15\linewidth}{%
170                 \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps}
171         }
172         %\hfill
173 }}
174 \hfill\mbox{}\\[0cm]
175
176 %\vspace*{1.3cm}
177
178 % content, let's rock the columns
179 \begin{lrbox}{\spalten}
180         \parbox[t][\textheight]{1.3\textwidth}{%
181                 %\vspace*{0.2cm}
182                 \hfill
183                 %\hspace{0.5cm}
184 % first column
185 \begin{spalte}
186         \begin{kasten}
187
188         \section*{1 \hspace{0.1cm} {\color{blue}Experimental observations}}
189
190                 \subsection*{1.1 {\color{blue} Amorphous inclusions}}
191                         \begin{center}              
192                                 \includegraphics[width=11cm]{k393abild1_e.eps} 
193                         \end{center}
194                         Cross section TEM image:\\
195                         $180 \, keV$ $C^+ \rightarrow Si$,
196                         $T=150 \, ^{\circ} \mathrm{C}$,
197                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
198                         black/white: crystalline/amorphous material\\
199                         L: amorphous lamellae, S: spherical amorphous inclusions
200
201                 \subsection*{1.2 {\color{blue} Carbon distribution}}
202                         \begin{center}
203                                 \includegraphics[width=11cm]{eftem.eps}
204                         \end{center}
205                         Brightfield TEM and respective EFTEM image:\\
206                         $180 \, keV$ $C^+ \rightarrow Si$,
207                         $T=200 \, ^{\circ} \mathrm{C}$,
208                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
209                         yellow/blue: high/low concentrations of carbon
210
211         \end{kasten}
212
213         \begin{kasten}
214                 \section*{2 \hspace{0.1cm} {\color{blue}Model}}
215
216                         \begin{center}
217                                 \includegraphics[width=11cm]{modell_ng_e.eps}
218                         \end{center}
219                         \begin{itemize}
220 \item supersaturation of $C$ in $c-Si$\\
221       $\rightarrow$ {\bf carbon induced} nucleation of spherical
222       $SiC_x$-precipitates
223 \item high interfacial energy between $3C-SiC$ and $c-Si$\\
224       $\rightarrow$ {\bf amourphous} precipitates
225 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
226       $\rightarrow$ {\bf lateral strain} (black arrows)
227 \item implantation range near surface\\
228       $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component}
229 \item reduction of the carbon supersaturation in $c-Si$\\
230       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
231       (white arrows)
232 \item remaining lateral strain\\
233       $\rightarrow$ {\bf strain induced} lateral amorphization
234                         \end{itemize}
235         \end{kasten}
236         \begin{kasten}
237                 \section*{3 \hspace{0.1cm} {\color{blue}Simulation}}
238
239                 \subsection*{3.1 {\color{blue} Discretization of the target}}
240                         \begin{center}
241                                 \includegraphics[width=6cm]{gitter_e.eps}
242                         \end{center}
243                         Periodic boundary conditions in $x,y$-direction.\\
244                         Start conditions: All volumes crystalline, zero carbon
245                         concentration.
246
247                 \subsection*{3.3 {\color{blue} TRIM collision statistics}}
248                 \begin{center}
249                         \includegraphics[width=8cm]{trim_coll_e.eps}
250                 \end{center}
251                 \begin{center}
252                 $\Rightarrow$ mean constant energy loss per collision of an ion
253                 \end{center}
254         \end{kasten}
255 \end{spalte}
256 \begin{spalte}
257         \begin{kasten}
258                 \subsection*{3.2 {\color{blue} Simulation algorithm}}
259
260                 \subsubsection*{3.2.1 Amorphization/Recrystallization}
261                         \begin{itemize}
262                                 \item random numbers distributed according to 
263                                       the nuclear energy loss to determine the
264                                       volume hit by an impinging ion
265                                 \item compute local probability for
266                                       amorphization:\\
267 \[
268  p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
269 \]
270                                       and recrystallization:
271 \[
272  p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
273 \]
274 \[
275 \delta (\vec r) = \left\{
276 \begin{array}{ll}
277         1 & \textrm{volume at position $\vec r$ amorphous} \\
278         0 & \textrm{otherwise} \\
279 \end{array}
280 \right.
281 \]
282                                 \item loop for the mean amount of hits by the
283                                       ion
284                         \end{itemize}
285 Three contributions to the amorphization process controlled by:
286 \begin{itemize}
287         \item {\color{green} $p_b$} normal 'ballistic' amorphization
288         \item {\color{blue} $p_c$} carbon induced amorphization
289         \item {\color{red} $p_s$} stress enhanced amorphization
290 \end{itemize}
291
292                 \subsubsection*{3.2.2 Carbon incorporation}
293                         \begin{itemize}
294                                 \item random numbers distributed according to
295                                       the implantation profile to determine the
296                                       incorporation volume
297                                 \item increase the amount of carbon atoms in
298                                       that volume
299                         \end{itemize}
300                 \subsubsection*{3.2.3 Diffusion/Sputtering}
301                         \begin{itemize}
302                                 \item every $d_v$ steps transfer $d_r$ of the
303                                       carbon atoms of crystalline volumina to
304                                       an amorphous neighbour volume
305                                 \item do the sputter routine after $n$ steps
306                                       corresponding to $3 \, nm$ of substrat
307                                       removal
308                         \end{itemize}
309
310         \end{kasten}
311         \begin{kasten}
312                 \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}}
313
314                 \subsection*{4.1 {\color{blue} Comparison with experiments}}
315                         \begin{center}              
316                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_1-2.eps}
317                         \end{center}
318                         \begin{center}              
319                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps}
320                         \end{center}
321                         Simulation parameters:\\
322                         $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
323                         $d_v=1 \times 10^6$.
324         \end{kasten}
325         \begin{kasten}
326                 \subsection*{4.2 {\color{blue} Variation of the simulation parameters}}
327                         \begin{center}              
328                         \includegraphics[width=11cm]{var_sim_paramters_en.eps}
329                         \end{center}
330                         Parameters of initial situation:\\
331                         $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
332                         $d_v=1 \times 10^6$.
333         \end{kasten}
334 \end{spalte}
335 \begin{spalte}
336         \begin{kasten}
337                 \subsection*{4.3 {\color{blue} Carbon distribution}}
338                         \begin{center}              
339                         \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
340                         \end{center}
341                         
342         \end{kasten}
343         \begin{kasten}
344                 \subsection*{4.4 {\color{blue} More structural/compositional
345                                                information}}
346                 \begin{center}
347                         \includegraphics[width=8cm]{97_98_ng_e.eps} \\
348                         Plane view of consecutive target layers $z$ and $z+1$
349                 \end{center}
350         \end{kasten}
351         \begin{kasten}
352                 \subsection*{4.5 \hspace{0.1cm} {\color{blue} Broad distribution
353                              of lamellar structure - the recipe}}
354                 \subsubsection*{4.5.1 Constant carbon concentration}
355                         \makebox[11cm]{%
356                                 \parbox[c]{5cm}{%
357                         \begin{itemize}
358                                 \item multiple implantation\\
359                                       steps
360                                 \item energies: $180$ - $10 \, keV$
361                                 \item temeprature: $500 ^{\circ} \mathrm{C}$\\
362                                       $\rightarrow$ prevent amorphization
363                         \end{itemize}
364                         $\Rightarrow$ nearly constant carbon distribution
365                         ($10 \, at.\%$)
366                                 }
367                                 \parbox[c]{6cm}{%
368                         \includegraphics[width=6cm]{multiple_impl_cp_e.eps}
369                                 }
370                         }
371                 \subsubsection*{4.5.2 2 MeV C$^+$ implantation
372                                                step}
373                         \begin{center}              
374                         \includegraphics[width=10cm]{multiple_impl_e.eps}
375                         \end{center}
376                         Starting point for materials with high photoluminescence.\\
377                         Dihu Chen et al. Opt. Mater. 23 (2003) 65.
378
379         \end{kasten}
380         \begin{kasten}
381                 \section*{5 \hspace{0.1cm} {\color{red} Conclusion}}
382                         \begin{itemize}
383                 \item selforganized nanometric precipitates by ion irradiation
384                 \item model describing the seoforganization process
385                 \item set of parameters reproducing the experimental observations
386                 \item precipitation process traceable by simulation
387                 \item detailed structural/compositional information
388                 \item recipe for broad distributions of lamellar structure
389                         \end{itemize}
390         \end{kasten}
391 \end{spalte}
392 }
393 \end{lrbox}
394 \resizebox*{0.98\textwidth}{!}{%
395 \usebox{\spalten}}\hfill\mbox{}\vfill
396
397 \end{document}