]> www.hackdaworld.org Git - lectures/latex.git/blob - nlsop/poster/nlsop_ibmm2006.tex
stable candidate
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006.tex
1 \documentclass[10pt]{scrartcl}
2
3 % howto ...
4 %
5 % resize to A0 (900 x 1100 mm) full poster size
6 %        or A4 or Letter size
7
8 % resize factor:
9 %        2*sqrt(2) = 2.828    (for A0)
10 %        2         = 2.00     (for A1) 
11 %
12 %
13 % format definition:
14 %
15 % special format, scaled by 2.82 -> A0
16 %
17 % A4 landscape (?)
18 %
19 %\def\breite{390mm}
20 %\def\hoehe{319.2mm}
21 %\def\anzspalten{4}
22 %
23 % A3 landscape
24 %
25 %\def\breite{420mm}
26 %\def\hoehe{297mm}
27 %\def\anzspalten{4}
28 %
29 % A3 portrait
30 %
31 %\def\breite{297mm}
32 %\def\hoehe{420mm}
33 %\def\anzspalten{3}
34 %
35 % A4 portrait
36 %
37 %\def\breite{210mm}
38 %\def\hoehe{297mm}
39 %\def\anzspalten{2}
40 %
41 % A0 portrait
42 %
43 %\def\breite{841mm}
44 %\def\hoehe{1189mm}
45 %\def\anzspalten{3}
46 %
47 % A0 / 2.82 portrait
48 %
49 \def\breite{298.23mm}
50 \def\hoehe{421.63mm}
51 \def\anzspalten{3}
52 %
53 %
54 %
55 % scaling procedure:
56 %   ./poster_resize poster.ps S
57
58 % european sizes:
59 %   A3: 29.73 x 42.04 cm
60 %   A1: 59.5 x 84.1 cm
61 %   A0: 84.1 x 118.9 cm
62 %
63
64 % packages:
65
66 \usepackage{palatino}
67 \usepackage[latin1]{inputenc}
68 \usepackage{epsf}
69 \usepackage{graphicx,psfrag,color,pstricks,pst-grad}
70 \graphicspath{{../img/}}
71 \usepackage{amsmath,amssymb}
72 \usepackage{latexsym}
73 \usepackage{calc}
74 \usepackage{multicol}
75 \usepackage[german]{babel}
76
77 % numbers, lengths and boxes:
78 %
79 \newsavebox{\dummybox}
80 \newsavebox{\spalten}
81 %
82 \newlength{\bgwidth}\newlength{\bgheight}
83 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
84 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
85 %
86 \newlength{\kastenwidth}
87 %
88 \setlength\paperheight{\hoehe}                                             
89 \setlength\paperwidth{\breite}
90 \special{papersize=\breite,\hoehe}
91 %
92 \topmargin -1in
93 \marginparsep0mm
94 \marginparwidth0mm
95 \headheight0mm
96 \headsep0mm
97 %
98 \setlength{\oddsidemargin}{-2.44cm}
99 \addtolength{\topmargin}{-3mm}
100 \textwidth\paperwidth
101 \textheight\paperheight
102 %
103 \parindent0cm
104 \parskip1.5ex plus0.5ex minus 0.5ex
105 \pagestyle{empty}
106 %
107 \definecolor{recoilcolor}{rgb}{1,0,0}
108 \definecolor{occolor}{rgb}{0,1,0}
109 \definecolor{pink}{rgb}{0,1,1}
110 %
111 \def\UberStil{\normalfont\sffamily\bfseries\large}
112 \def\UnterStil{\normalfont\sffamily\small}
113 \def\LabelStil{\normalfont\sffamily\tiny}
114 \def\LegStil{\normalfont\sffamily\tiny}
115
116 % commands:
117 %
118 \definecolor{JG}{rgb}{0.1,0.9,0.3}
119 %
120 \newenvironment{kasten}{%
121         \begin{lrbox}{\dummybox}%
122         \begin{minipage}{0.96\linewidth}}%
123         {\end{minipage}%
124         \end{lrbox}%
125 \raisebox{-\depth}{\psshadowbox[framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
126 %
127 \newenvironment{spalte}{%
128         \setlength\kastenwidth{1.2\textwidth}
129         \divide\kastenwidth by \anzspalten
130         \begin{minipage}[t]{\kastenwidth}}
131         {\end{minipage}\hfill}
132 %
133 \renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
134 %
135 \def\op#1{\hat{#1}}
136
137 %
138 % the document begins ...
139 %
140 \begin{document}
141
142 % background
143 {\newrgbcolor{gradbegin}{0.1 0.1 0.1}%
144  \newrgbcolor{gradend}{1 1 1}%
145  \psframe[fillstyle=gradient,gradend=gradend,%
146  gradbegin=gradbegin,gradmidpoint=0.5](\bgwidth,-\bgheight)%
147 }
148
149 % header
150 %\vfill
151 \hfill
152 \psshadowbox{\makebox[0.95\textwidth]{%
153         %\hfill
154         \parbox[c]{0.15\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
155         \parbox[c]{0.62\linewidth}{%
156                 \begin{center}
157                         \textbf{\Huge{Monte Carlo simulation study \\
158                                       of a selforganization process \\
159                                       leading to ordered precipitate structures}
160                         }\\[0.7em]
161                         \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen,
162                                        J. K. N. Lindner, B. Stritzker
163                         }\\[0.7em]
164                         {\large Institut f"ur Physik, Universit"at Augsburg,
165                          D-86135 Augsburg, Germany
166                         }
167                 \end{center}
168         }
169         \parbox[c]{0.15\linewidth}{%
170                 \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps}
171         }
172         %\hfill
173 }}
174 \hfill\mbox{}\\[0.1cm]
175
176 %\vspace*{1.3cm}
177
178 % content, let's rock the columns
179 \begin{lrbox}{\spalten}
180         \parbox[t][\textheight]{1.3\textwidth}{%
181                 %\vspace*{0.2cm}
182                 \hfill
183                 %\hspace{0.5cm}
184 % first column
185 \begin{spalte}
186         \begin{kasten}
187
188         \section*{1 \hspace{0.1cm} {\color{blue}Experimental observations}}
189
190                 \subsection*{1.1 {\color{blue} Amorphous inclusions}}
191                         \begin{center}              
192                                 \includegraphics[width=11cm]{k393abild1_e.eps} 
193                         \end{center}
194                         Cross section TEM image:\\
195                         $180 \, keV$ $C^+ \rightarrow Si$,
196                         $T=150 \, ^{\circ} \mathrm{C}$,
197                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
198                         black/white: crystalline/amorphous material\\
199                         L: amorphous lamellae, S: spherical amorphous inclusions
200
201                 \subsection*{1.2 {\color{blue} Carbon distribution}}
202                         \begin{center}
203                                 \includegraphics[width=11cm]{eftem.eps}
204                         \end{center}
205                         Brightfield TEM and respective EFTEM image:\\
206                         $180 \, keV$ $C^+ \rightarrow Si$,
207                         $T=200 \, ^{\circ} \mathrm{C}$,
208                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
209                         yellow/blue: high/low concentrations of carbon
210
211         \end{kasten}
212
213         \begin{kasten}
214                 \section*{2 \hspace{0.1cm} {\color{blue}Model}}
215
216                         \begin{center}
217                                 \includegraphics[width=11cm]{modell_ng_e.eps}
218                         \end{center}
219                         \begin{itemize}
220 \item supersaturation of $C$ in $c-Si$\\
221       $\rightarrow$ {\bf carbon induced} nucleation of spherical
222       $SiC_x$-precipitates
223 \item high interfacial energy between $3C-SiC$ and $c-Si$\\
224       $\rightarrow$ {\bf amourphous} precipitates
225 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
226       $\rightarrow$ {\bf lateral strain} (black arrows)
227 \item reduction of the carbon supersaturation in $c-Si$\\
228       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
229       (white arrows)
230 \item lateral strain (vertical component relaxating)\\
231       $\rightarrow$ {\bf strain induced} lateral amorphization
232                         \end{itemize}
233         \end{kasten}
234         \begin{kasten}
235                 \section*{3 \hspace{0.1cm} {\color{blue}Simulation}}
236
237                 \subsection*{3.1 {\color{blue} Discretization of the target}}
238                         \begin{center}
239                                 \includegraphics[width=6cm]{gitter_e.eps}
240                         \end{center}
241                         Periodic boundary conditions in $x,y$-direction.\\
242                         Start conditions: All volumes crystalline, zero carbon
243                         concentration.
244
245                 \subsection*{3.3 {\color{blue} TRIM collision statistics}}
246                 \begin{center}
247                         \includegraphics[width=8cm]{trim_coll_e.eps}
248                 \end{center}
249                 \begin{center}
250                 $\Rightarrow$ mean constant energy loss per collision of an ion
251                 \end{center}
252         \end{kasten}
253 \end{spalte}
254 \begin{spalte}
255         \begin{kasten}
256                 \subsection*{3.2 {\color{blue} Simulation algorithm}}
257
258                 \subsubsection*{3.2.1 Amorphization/Recrystallization}
259                         \begin{itemize}
260                                 \item random numbers according to the nuclear
261                                       energy loss to determine the volume hit
262                                       by an impinging ion
263                                 \item compute local probability for
264                                       amorphization:\\
265 \[
266  p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
267 \]
268                                       and recrystallization:
269 \[
270  p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
271 \]
272 \[
273 \delta (\vec r) = \left\{
274 \begin{array}{ll}
275         1 & \textrm{volume at position $\vec r$ amorphous} \\
276         0 & \textrm{otherwise} \\
277 \end{array}
278 \right.
279 \]
280                                 \item loop for the mean amount of hits by the
281                                       ion
282                         \end{itemize}
283 Three contributions to the amorphization process controlled by:
284 \begin{itemize}
285         \item {\color{green} $p_b$} normal 'ballistic' amorphization
286         \item {\color{blue} $p_c$} carbon induced amorphization
287         \item {\color{red} $p_s$} stress enhanced amorphization
288 \end{itemize}
289
290                 \subsubsection*{3.2.2 Carbon incorporation}
291                         \begin{itemize}
292                                 \item random numbers according to the
293                                       implantation profile to determine the
294                                       incorporation volume
295                                 \item increase the amount of carbon atoms in
296                                       that volume
297                         \end{itemize}
298                 \subsubsection*{3.2.3 Diffusion/Sputtering}
299                         \begin{itemize}
300                                 \item every $d_v$ steps transfer $d_r$ of the
301                                       carbon atoms of crystalline volumina to
302                                       an amorphous neighbour volume
303                                 \item do the sputter routine after $n$ steps
304                                       corresponding to $3 \, nm$ of substrat
305                                       removal
306                         \end{itemize}
307
308         \end{kasten}
309         \begin{kasten}
310                 \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}}
311
312                 \subsection*{4.1 {\color{blue} Comparison with experiments}}
313                         \begin{center}              
314                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_1-2.eps}
315                         \end{center}
316                         \begin{center}              
317                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps}
318                         \end{center}
319                         Simulation parameters:\\
320                         $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
321                         $d_v=1 \times 10^6$.
322         \end{kasten}
323         \begin{kasten}
324                 \subsection*{4.2 {\color{blue} Variation of the simulation parameters}}
325                         \begin{center}              
326                         \includegraphics[width=11cm]{var_sim_paramters_en.eps}
327                         \end{center}
328                         Parameters of initial situation:\\
329                         $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
330                         $d_v=1 \times 10^6$.
331         \end{kasten}
332 \end{spalte}
333 \begin{spalte}
334         \begin{kasten}
335                 \subsection*{4.3 {\color{blue} Carbon distribution}}
336                         \begin{center}              
337                         \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
338                         \end{center}
339                         
340         \end{kasten}
341         \begin{kasten}
342                 \subsection*{4.4 {\color{blue} More structural/compositional
343                                                information}}
344                 \begin{center}
345                         \includegraphics[width=8cm]{97_98_ng_e.eps} \\
346                         Plane view of consecutive target layers $z$ and $z+1$
347                 \end{center}
348         \end{kasten}
349         \begin{kasten}
350                 \subsection*{4.5 \hspace{0.1cm} {\color{blue} Broad distribution
351                              of lamellar structure - the recipe}}
352                 \subsubsection*{4.5.1 Constant carbon concentration}
353                         \makebox[11cm]{%
354                                 \parbox[c]{5cm}{%
355                         \begin{itemize}
356                                 \item multiple implantation \\ steps
357                                 \item energies: $180$ - $10 \, keV$
358                                 \item higher temeprature\\
359                                       $\rightarrow$ prevent amorphization
360                         \end{itemize}
361                         $\Rightarrow$ nearly constant carbon distribution
362                         ($10 \, at.\%$)
363                                 }
364                                 \parbox[c]{6cm}{%
365                         \includegraphics[width=6cm]{multiple_impl_cp_e.eps}
366                                 }
367                         }
368                 \subsubsection*{4.5.2 2 MeV C$^+$ implantation
369                                                step}
370                         \begin{center}              
371                         \includegraphics[width=10cm]{multiple_impl_e.eps}
372                         \end{center}
373
374         \end{kasten}
375         \begin{kasten}
376                 \section*{5 \hspace{0.1cm} {\color{red} Conclusions}}
377                         \begin{itemize}
378                 \item selforganized nanometric precipitates by ion irradiation
379                 \item model describing the seoforganization process
380                 \item precipitate structures traceable by simulation
381                 \item detailed structural/compositional information
382                 \item recipe for broad distributions of lamellar structure
383                         \end{itemize}
384         \end{kasten}
385 \end{spalte}
386 }
387 \end{lrbox}
388 \resizebox*{0.98\textwidth}{!}{%
389 \usebox{\spalten}}\hfill\mbox{}\vfill
390
391 \end{document}