2 \label{chapter:ergebnisse}
4 Im Folgenden werden die Ergebnisse der Simulation vorgestellt.
5 Dabei werden Simulationsergebnisse mit experimentellen Ergebnissen aus \cite{maik_da} verglichen.
7 Durch Variation der Simulationsparameter wird dar"uberhinaus der in Kapitel \ref{chapter:modell} vorgestellte Bildungsmechanismus der amorphen $SiC_x$-Phasen in $Si$ untersucht.
8 Hierbei wird vor allem der Einfluss einzelner Simulationsparameter wie Diffusion und St"arke der Druckspannungen auf den Selbstorganisationsprozess betrachtet.
10 Unter der Annahme der Richtigkeit des Modells und seiner Umsetzung, k"onnen sehr leicht Aussagen "uber die Struktur und Zusammensetzung an jedem beliebigen Ort des Targets w"ahrend des Ordnungsprozesses gemacht werden.
11 Diese Information ist experimentell schwer zug"anglich.
13 Zun"achst werden die Ergebnisse der Simulationen bis $300 nm$ Tiefe vorgestellt.
14 Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich diskutiert.
16 \section{Simulation bis 300 nm Tiefe}
18 Erste Simulationen wurden mit {\em NLSOP} Version 1 in einem begrenzten Tiefenbereich durchgef"uhrt, um festzustellen, ob mit dem Modell und der verwendeten Monte-Carlo-Implementierung "uberhaupt geordnete Lamellenstrukturen reproduziert werden k"onnen und welche Prozesse dabei entscheidend sind.
19 Daf"ur ist eine genaue Kenntnis der Dosis nicht wichtig.
20 Desweiteren kommt es hier nicht auf die exakte Tiefenposition der Ausscheidungen an, weshalb Sputtereffekte vernachl"assigt werden k"onnen.
22 In jedem Durchlauf wird nur ein Sto"sprozess, der zur Amorphisierung beziehungsweise Rekristallisation eines Targetvolumens f"uhren kann betrachtet.
23 Diffusion des Kohlenstoffs von kristallinen in amorphe Gebiete findet statt.
24 Sputtereffekte k"onnen wegen fehlender Information "uber Kohlenstoffgehalt und die amorph/kristalline Struktur in tieferen Ebenen nicht beachtet werden.
26 \subsection{Erste Simulationsdurchl"aufe}
28 In ersten Simulationen wurde zun"achst untersucht, "uber welche Entfernung von einer benachbarten Zelle die von den amorphen Nachbarzellen ausgehenden Spannungen ber"ucksichtigt werden m"ussen.
29 Ist ein Einfluss der weiter entfernten Zellen vernachl"assigbar, so l"asst sich ein Abbruchradius f"ur die Behandlung der Spannungen definieren.
30 Ein Abbruchkriterium ist zum einem wegen der Behandlung eines in $x-y$-Richtung unendlich ausgedehnten Festk"orpers, realisiert durch periodische Randbedingungen, und zum anderen wegen schnellerer Berechnung der Druckspannungen n"otig.
32 Eine Erh"ohung des Abbruchradius von $r=5$ auf $r=10$ Volumina, was einer L"ange von $15$ beziehungsweise $30 nm$ entspricht, zeigt eine gr"ossere Menge an amorphen Gebieten, die lamellare Ordnung der Ausscheidungen steigt jedoch nicht an.
33 Dies ist in Abbildung \ref{img:first_sims} a) und b) zu erkennen.
34 Aus diesem Grund wurde der Abbruchradius f"ur alle weiteren Simulationen auf $r=5$ Volumen gesetzt.
35 \printimg{h}{width=15cm}{first_sims.eps}{Cross-Section verschiedener Simulationsergebnisse. Simulationsparameter (wenn nicht anderst angegeben): $p_b=0,01$, $p_c=0,05$, $p_s=0,05$, $r=5$, $d_v=100$, $d_r=0,5$, $s=3 \times 10^5$. Variierte Parameter: $b)$ $r=10$, $c)$ $p_b=0,05$, $p_s=0,1$.}{img:first_sims}
37 Die Simulationen wurden zun"achst mit sehr geringen Schrittzahlen (zwischen $2$ und $4 \times 10^{5}$ Schritten) durchgef"uhrt.
38 Voraussetzung f"ur die Entstehung amorpher Gebiete bei dieser geringen Schrittzahl sind hohe Werte f"ur die zur Amorphisierung beitragenden Simulationsparameter $p_b$, $p_c$ und $p_s$ (Gr"o"senordnungsbereich $10^{-2}$).
39 Die Erh"ohung der Parameter f"ur die ballistische Amorphisierung (Abbildung \ref{img:first_sims} c)) und selbst die der spannungsinduzierten Amorphisierung (Abbildung \ref{img:first_sims} d)) "au"sern sich in einer gr"osseren Menge an amorphen Gebieten.
40 Eine klare Lamellenbildung ist unter diesen Bedingungen nicht zu erkennen.
42 Macht man die Parameter jedoch sehr viel kleiner und erh"oht im Gegenzug die Schrittzahl, so erwartet man, dass zuf"allig amorphisierte Zellen ohne amorphe Nachbarn mit aller Wahrscheinlichkeit im Falle eines Sto"ses rekristallisieren werden.
43 Ein amorphes Volumen das lateral selbst eine amorphe Nachbarschaft hat, wird sich selbst und die amorphen Nachbarn stabilisieren.
44 Dies f"uhrt zu einer Stabilisierung und gef"orderten Ausbildung lamellarer amorpher $SiC_x$-Ausscheidungen.
45 F"ur den Selbstorganisationsprozess sind daher eine h"ohere Schrittzahl und kleinere Werte der erw"ahnten, zur Amorphisierung beitragenden Simulationsparameter gefordert.
46 Das System erreicht so nicht bereits nach einer kurzen Schrittfolge seine Endkonfiguration, die stark von der Statistik der einzelnen Amorphisierungsprozesse gepr"agt ist.
47 Anstelledessen stellt sich im System sukzessive eine Ordnung ein, die unter den gegebenen Regeln m"oglichst stabil ist.
49 Die Notwendigkeit der niedrigen Amorphisierungsparameter, welche eine fr"uhe komplette Amorphisierung des Targets verhindern, steht im Einklang mit den Beobachtungen aus \cite{lindner_appl_phys}.
50 Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen erwartet man bei den hohen Targettemperaturen keine Amorphisierung.
51 Die Ursache des stattfindenden Amorphisierungsprozesses liegt an der erh"ohten Kohlenstoffkonzentration mit steigender Dosis.
52 Es handelt sich um kohlenstoffinduzierte Amorphisierung.
54 \subsection{Vergleich von Simulationsergebnis und experimentell beobachteter Struktur}
55 \label{subsection:tem_sim_cmp}
57 Im Folgenden wurde f"ur Simulationen mit $X,Y=50$ beziehungsweise $X,Y=64$ die Anzahl der Durchl"aufe auf $20$ beziehungsweise $30 \times 10^{6}$ gesetzt.
58 Sieht man "uber die Tatsache hinweg, dass bei einem Durchlauf nicht die f"ur ein Ion durchschnittliche Anzahl der St"o"se ausgef"uhrt wird, kann eine "Aquivalenzdosis angegeben werden.
59 Betrachtet man einen Durchlauf als ein implantiertes Ion, so ergibt das nach \eqref{eq:dose_steps} eine Dosis von $0,89$ beziehungsweise $0,81 \times 10^{17} cm^{-2}$.
61 \printimg{h}{width=15cm}{if_cmp3.eps}{Vergleich von Simulationsergebnis und experimentellen Ergebnis einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 keV \quad C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. Simulationsparameter: $s = 3 \times 10^{7}$, $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_v=10$, $d_r=0,5$.}{img:tem_sim_comp}
63 Zun"achst wird nach einem Satz von Parametern gesucht, der die experimentellen Ergebnisse reproduziert.
64 Davon ausgehend k"onnen dann einzelne Parameter variiert und ihre Auswirkungen studiert werden.
66 Tats"achlich k"onnen Parameter eingestellt werden, die die experimentell gefundene Ordnung zuzfriedenstellend reproduzieren.
67 Abbildung \ref{img:tem_sim_comp} zeigt den Vergleich zwischen Simulationsergebnis und dem experimentellen Befund aus Abbildung \ref{img:xtem_img}.
68 Wie man erkennt, ist die Simulation in der Lage lamellare Strukturen zu erzeugen.
69 Diese sind im Tiefenbereich von $200$ bis $300 nm$ zu erkennen.
70 Dies entspricht etwa dem Tiefenbereich, in dem auch mit Cross-Section TEM lamellare Ausscheidungen f"ur eine Dosis von $4,3 \times 10^{17} cmi^{-2}$ bei $180 keV$ $C^+$-Implantation gefunden werden.
71 Durch einfaches Abz"ahlen der Lamellen in diesem Tiefenbereich am Rand der TEM-Aufnahme beziehungsweise des Simulationsergebnisses erkennt man, dass auch die Anzahl der Lamellen pro Tiefenintervall recht gut reproduziert wird.
72 Desweiteren stimmen sogar die durchschnittlichen L"angen der Lamellen in Experiment und Simulation "uberein.
74 Eine objektive Methode der Messung der \dq Lamellarigkeit\dq{} stellt die Fouriertransformation dar.
75 Hierzu wurde das Programm {\em dft} (kurz f"ur {\bf d}iscrete {\bf f}ourier {\bf t}ransform) geschrieben.
76 Dieses schneidet die untersten $50 \times 50$ beziehungsweise $64 \times 64$ Bildpunkte der Querschnittsansicht aus und wendet darauf eine $2d$-Fouriertransformation an.
77 Dabei wird die Intensit"at des fouriertransformierten Bildes skaliert, um Bildpunkte ausserhalb der Ortsfrequenz Null besser erkennen zu k"onnen.
79 \printimg{h}{width=8cm}{sim_tem_cmp_dft.eps}{Vergleich der Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}. $a)$ Simulation, $b)$ Experiment.}{img:dft_tem_sim_cmp}
80 Abbildung \ref{img:dft_tem_sim_cmp} zeigt die Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}.
81 Die horizontalen Lamellen f"uhren in der Fouriertransformierten erwartungsgem"a"s zu vertikalen Streifen.
83 Durch einen Linescan einer gewissen Breite (hier: $\Delta f_x = \pm \frac{3}{64 \times 3 nm}$) f"ur die Ortsfrequenz $f_x=0$ erh"alt man Information "uber die Periodizit"at der Lamellen in $y$-Richtung.
84 Durch die Intensit"atsskalierung lassen sich Linescans gut miteinander vergleichen, da deren Intensit"atsverlauf in der selben Gr"o"senordnung liegt.
85 \printimg{h}{width=12cm}{tem_cmp_ls.eps}{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}.}{img:tem_cmp_ls}
86 Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}.
87 F"ur den Vergleich mit der TEM-Aufnahme wurde der linke Teil der Aufnahme abgeschnitten und auf $100$ Bildpunkte in der H"ohe skaliert.
88 Im Gegensatz zur Simulation hat die TEM-Aufnahme eine sehr hohe mittlere Helligkeit, was ein grosses Maxima bei der Ortsfrequenz Null zur Folge hat.
89 Daher sind Maxima anderer Frequenzen schlecht zu erkennen.
90 Bei genauerem Hinsehen erkennt man aber drei Ortsfrequenzen mit lokalem Maximum in der Intensit"at.
91 Im Linescan der Simulation erkennt man auch Maxima nahe dieser Frequenzen.
93 Im Folgenden wird die Fouriertransformation vorallem zum Vergleich zwischen Simulationsergebnissen verwendet.
95 \subsection{Notwendigkeit der Diffusion}
96 \label{subsection:ess_diff}
98 Im Folgenden werden die Diffusionsparameter variiert um deren Auswirkungen auf die Ausscheidungsanordnung sichtbar zu machen.
99 Da die kohlenstoffinduzierte Amorphisierung den wahrscheinlich wichtigsten Beitrag zur Amorphisierung liefert, liegt es auf der Hand, dass die Kohlenstoffdiffusion erheblichen Einfluss auf den Selbstorganisationsvorgang hat.
101 \printimg{h}{width=13cm}{diff_einfluss.eps}{Vergleich von Simulationen mit unterschiedlicher Diffusionsrate $d_r$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,004$, $d_v=10$, $s=20 \times 10^6$. Variiierte Diffusion: $a)$ $d_r^z=d_r^{x,y}=0,2$, $b)$ $d_r^z=d_r^{x,y}=0,5$ $c)$ $d_r^z=0$, $d_r^{x,y}=0,5$. Die Abbildung zeigt die Querschnitte $a)$ - $c)$ und deren Fouriertransformierte $d)$ - $f)$.}{img:diff_influence}
102 \printimg{h}{width=13cm}{diff_einfluss_ls.eps}{Linescan "uber die Orstfrequenz $f_x=0$ der Fouriertransformierten aus \ref{img:diff_influence} mit $a)$ $d_r^z=d_r^{x,y}=0,5$, $b)$ $d_r^z=d_r^{x,y}=0,2$ und $c)$ $d_r^z=0$, $d_r^{x,y}=0,5$.}{img:diff_influence_ls}
103 Abbildung \ref{img:diff_influence} zeigt den Vergleich von Ergebnissen mit unterschiedlicher Diffusionsrate $d_r$.
104 Zus"atzlich kann die Diffusion in $z$-Richtung unterdr"uckt werden ($d_r^z=0$).
105 Unter der Querschnittsansicht ist die jeweilige Fouriertransformierte abgebildet.
106 Die beiden Querschnitte in Abbildung \ref{img:diff_influence} a) und c) entsprechen identischen Simulationsdurchl"aufen, wobei in Abbildung \ref{img:diff_influence} c) die Diffusion in $z$-Richtung unterdr"uckt wurde.
107 Lamellare Strukturen beobachtet man nur im Falle mit Diffusion in $z$-Richtung.
108 Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen.
109 Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohelnstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation.
110 Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt auf Grund der wachsenden Druckspannungen an.
111 Da diese spannungsinduziert amorphisierten Gebiete fortan ebenfalls Senken f"ur diffundierenden Kohlenstoff bilden, ist damit eine immer kleiner werdende Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen Nachbarebenen verbunden.
112 Dieser Prozess f"ordert ganz offensichtlich die Ausbildung lamellarer Strukturen.
113 Das Ergebnis zeigt die Notwendigkeit der lokalen Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete, insbesondere der Diffusion in $z$-Richtung.
115 Weiterhin erkennt man einen Zusammenhang zwischen der Diffusionsrate $d_r$ und dem Tiefenintervall, in dem sich lamellare Strukturen gebildet haben.
116 Die Erh"ohung der Diffusionsrate von $d_r=0,2$ auf $d_r=0,5$ hat eine Vergr"osserung des Tiefenintervalls von ungef"ahr $60$ auf $150 nm$ zur Folge.
117 Bei hoher Diffusionsrate diffundiert der Kohlenstoff schneller in amorphe Volumina.
118 Dies stabilisiert die amorphe Ausscheidung.
119 Geringe Diffusionsraten verhindern ein schnelles Anh"aufen von Kohlenstoff in den amorphen Volumina.
120 Die amorphen Ausscheidungen sind nicht sehr stabil und werden mit hoher Wahrscheinlichkeit rekristallisieren.
121 Dies "au"sert sich auch in einer kleineren Anzahl an amorphen Gebieten insgesamt, f"ur die kleinere Rate $d_r=0,2$.
122 Stabile amorphe Ausscheidungen treten erst ab einer Tiefe von ungef"ahr $240 nm$ auf.
123 Hier ist die mittlere Kohlenstoffkonzentration hoch genug, um bei der hier herrschenden nuklearen Bremskraft etwas Amorphes zu erhalten.
125 Abbildung \ref{img:diff_influence_ls} zeigt die Linescans der fouriertransformierten Cross-Sections aus Abbildung \ref{img:diff_influence}.
126 Abbildung \ref{img:diff_influence_ls} c) geh"ort zur Simulation ohne Diffusion in $z$-Richtung.
127 Der Linescan zeigt kein Maximum ausser bei der Ortsfrequenz Null.
128 Dies steht im Einklang mit dem in Abbildung \ref{img:diff_influence} c) gezeigten Querschnitt.
129 Es haben sich keine lamellare Ausscheidungen gebildet.
130 Bei den in Abbildung \ref{img:diff_influence_ls} c) gezeigten Spektren ist die Diffusion stark und man erhaelt deutlich lamellare Ausscheidungen.
131 Dies "aussert sich auch am Linescan in den lokalen Maxima in der Intensit"at bei Ortsfrequenzen ungleich Null.
132 Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen.
133 Diese Frequenz entspricht einer Peridizit"at der Lamellen von $f_z^{-1} \approx 9,1 nm$.
134 Dies entspricht einer Anzahl von ungef"ahr $17$ Lamellen in einem Tiefenbereich von $150 nm$.
135 Eine "ahnlich grosse Zahl erh"alt man tats"achlich durch Abz"ahlen der Lamellen am linken Rand der Cross-Section aus Abbildung \ref{img:diff_influence} b).
136 Die Fouriertransformierte stellt also ein geeignetes Mittel zur objektiven Messung der \dq Lamellarigkeit\dq{} dar.
137 Auff"allig ist das Vorkommen von zwei ausgepr"agten Maxima in Abbildung \ref{img:diff_influence_ls} a).
138 Die Lamellenstrukturen in Abbildung \ref{img:diff_influence} a) setzen sich demnach wesentlich aus "Uberlagerungen von Ortswellen dieser zwei Frequenzen zusammen.
139 Tats"achlich findet man Lamellen haupts"achlich in den zwei entsprechenden Abst"anden vor.
141 \printimg{h}{width=15cm}{low_to_high_dv.eps}{Simulationsergebnisse f"ur a) $d_v=10$, b) $d_v=100$, c) $d_v=1000$, d) $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$.}{img:dv_influence}
142 \printimg{h}{width=13cm}{ls_dv_cmp.eps}{Linescan der fouriertransformierten Cross-Sections von Simulationen mit $d_v=10$ und $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$.}{img:dv_ls}
143 Neben der Diffusionsrate $d_r$ beschreibt der Simulationparameter $d_v$ den Diffusionsprozess.
144 Er gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte), und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten.
145 In Abbildung \ref{img:dv_influence} sind Simulationsergebnisse f"ur verschiedene $d_v$ abgebildet.
146 Erstaunlichwerweise scheint dieser Parameter keinen allzu grossen Einfluss auf das Ergebnis zu haben.
147 Das liegt daran, dass selbst die Anzahl von $10^4$ Schritten im Vergleich zur Anzahl der W"urfel im Target von $50 \times 50 \times 100 = 25 \times 10^{4}$ sehr viel keiner ist.
148 Damit ist es sehr wahrscheinlich, dass vor einem erneuten Treffer ein Volumen per Diffusionsprozess mit den Nachbarn Kohlenstoff austauscht.
149 Die Diffusion als essentieller Mechanismus f"ur den Selbstorganisationsprozess findet somit statt.
151 Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 nm$ mit zunehmenden $d_r$.
152 Ausserdem kann man eine kleine Zunahme der Periodenl"ange der Lamellen mit zunehmendem $d_v$ erahnen.
153 Dies erkennt man am besten beim Vergleich der zwei Extrema $d_v=10$ und $d_v=10000$.
154 Dies liegt wiederum an der schnelleren Diffusion, die eine aggressivere Anh"aufung von Kohlenstoff selbst in Tiefen geringerer Kohlenstoffkonzentration bewirkt.
156 In Abbildung \ref{img:dv_ls} sind die Linescans der fouriertransformierten Cross-Sections $a)$ und $d)$ aus Abbildung \ref{img:dv_influence} zu sehen.
157 Die Zunahme der Periodenl"ange macht sich hier durch die Verschiebung des Intensit"atsmaximums zu einer geringeren Frequenz bemerkbar.
158 W"ahrend der Linescan f"ur $d_v=10000$ (blau) schon f"ur Frequenzen unter $0,1 nm^{-1}$ Peaks hoher Intensit"at zeigt, erkennt man diese f"ur $d_v=10$ (rot) erst bei h"oheren Frequenzen.
159 Die durch Regression bestimmten Intensit"atsmaxima liegen bei $f_z \approx 0,106 nm^{-1}$ (blau) und $f_z \approx 0,114 nm^{-1}$ (rot).
160 Diese entsprechen unngef"ahr den Wellenl"angen $9,4 nm$ und $8,8 nm$.
162 Dieses Ergebnis einer unterschiedlich groben Verteilung der Lamellen unterstreicht ebenfalls die Bedeutung einer effizienten Diffusion f"ur die Anordnung des Kohlenstoffs in wohlseparierte Lamellen.
163 Physikalisch gesehen entspricht ein gro"ses $d_v$ einer Barriere f"ur den Einbau von Kohlenstoff in eine Lamelle.
164 Entsprechend dieser Interpretation w"urde st"andig der Transport von Kohlenstoff stattfinden, aber der Einbau des Kohlenstoffs f"ande nur nach einer gewissen Zeit statt.
166 \subsection{Einfluss der Druckspannungen}
168 Im Folgenden soll der Einfluss der Druckspannungen auf den Selbstorganisationsprozess diskutiert werden.
169 \printimg{h}{width=15cm}{high_to_low_a.eps}{Simulationsergebnisse f"ur verschiedene $p_s$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$. Variierter Parameter: $a)$ $p_s=0,001$, $b)$ $p_s=0,002$, $c)$ $p_s=0,003$, $d)$ $p_s=0,004$.}{img:p_s_influence}
170 In Abbildung \ref{img:p_s_influence} sind Simulationergebnisse mit variierten Druckspannungsparametern $p_s$ zu sehen.
171 Mit Verkleinerung des Wertes f"ur die St"arke des Einflusses von Spannungen auf die Amorphisierungswahrscheinlichkeit wird auch der Tiefenbereich, in dem sich lamellare Ausscheidungen bilden kleiner.
172 Gleichzeitig wird auch der laterale Durchmesser der amorphen Lamellen kleiner.
173 Diese Beobachtungen illustrieren den Mechanismus der spannungsinduzierten Amorphisierung.
174 Da kleinere $p_s$ eine kleinere Amorphisierungswahrscheinlichkeit der kristallinen Nachbarschaft zur Folge haben entstehen weniger amorphe Gebiete.
175 Die Druckspannungen fallen quadratisch mit der Entfernung ab.
176 Ein zuf"allig amorphisiertes Gebiet, das nicht direkt an eine Ausscheidung angrenzt, wird daher viel wahrscheinlicher rekristallisieren als eins in der direkten Nachbarschaft zu einer weiteren amorphen Zelle.
177 Da f"ur kleine $p_s$ zwar einzelne amorphe Zellen gebildet werden, aber keine ganzen Lamellen entstehen, ist zu schlussfolgern, dass selbst ein neu entstandenes amorphes Gebiet direkt neben einer Ausscheidung nicht mehr durch die Druckspannungen allein stabilisiert werden kann.
178 Es wird nur amorph bleiben, wenn vor dem n"achsten Sto"s genug Kohlenstoff durch den Diffusionsprozess gewonnen wird und eine Stabilisierung auf Grund der kohlenstoffinduzierten Amorphisierungswahrscheinlichkeit ausreicht.
180 \printimg{h}{width=12cm}{ps_einfluss_ls.eps}{Linescan der fouriertransformierten Cross-Sections aus Abbildung \ref{img:p_s_influence} von Simulationen mit $b)$ $p_s=0,002$, $c)$ $p_s=0,003$ und $d)$ $p_s=0,004$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$.}{img:p_s_per}
181 In Abbildung \ref{img:p_s_per} sind die Linescans der fouriertransformierten Cross-Sections mit $p_s=0,002$, $p_s=0,003$ und $p_s=0,004$ zu sehen (Abbildung \ref{img:p_s_influence} (b,c,d)).
182 Zun"achst f"allt das sch"arfere Maximum bei der Ortsfrequenz Null f"ur h"ohere Werte von $p_s$ auf.
183 Dies h"angt mit dem fouriertransformierten Tiefenbereich zusammen.
184 In Abbildung \ref{img:p_s_influence} b) existieren Lamellen nur etwa in der unteren H"alfte des Bereichs.
185 Daher hat hier die n"achst h"ohere Frequenz ungleich Null einen hohen Beitrag.
186 In c) und d) sind Lamellen im gesamten zu transformierenden Bereich zu erkennen, weshalb dieser Frequenzbeitrag hier nur einen geringen Beitrag ausmacht.
188 In Abbildung \ref{img:p_s_per} b) erkennt man zwei deutliche Intensit"atspeaks f"ur Frequenzen ungleich Null, die sich mit steigenedm $p_s$ bei h"oheren Frequenzen wiederfinden (Abbildung \ref{img:p_s_per} c).
189 Dieses Ergebnis erkennt man auch sehr gut an den zugeh"origen Querschnitten, in denen die Abst"ande der Lamellen abnehmen.
190 Bei fortgesetzter Erh"ohung des Spannungseinflusses auf $p_s=0,004$ gehen die zwei Intensit"atspeaks in ein Intensit"atsmaximum "uber, wie man in Abbildung \ref{img:p_s_per} d) erkennen kann.
191 Dieser "Ubergang deutet sich auch schon beim Vergleich der Linescans f"ur $p_s=0,002$ und $p_s=0,003$ an.
192 W"ahrend die Lamellenstruktur in Abbildung \ref{img:p_s_influence} b) und c) haupts"achlich zwei Abst"ande der Lamellen aufweist, gehen diese mit Erh"ohung des Spannungseinflusses $p_s$ in einen einheitlichen Abstand "uber.
193 Das gleiche Verhalten zeigte sich bei Variation von $d_r$ in Abschnitt \ref{subsection:ess_diff}.
194 Dies deutet an, dass Ma"snahmen die einer Bildung von Lamellen entgegenwirken zun"achst die perfekte einheitliche Struktur aufl"osen, die durch eine "Uberlagerung unterschiedlicher Strukturen abgel"ost wird, bis letzten Endes die komplette Struktur verloren geht.
196 \subsection{Verteilung des Kohlenstoffs im Target}
197 \label{subsection:c_distrib}
199 \printimg{h}{width=12cm}{97_98.eps}{Amorph/Kristalline Struktur, Kohlenstoffverteilung und Druckspannungen in zwei aufeinander folgenden Ebenen $z=97$ und $z=98$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,004$, $d_v=10$, $d_r=0,5$, $s=2 \times 10^7$.}{img:s_c_s_distrib}
200 In Abbildung \ref{img:s_c_s_distrib} ist ein Querschnitt zweier Ebenen $z$ und $z+1$ des Targets abgebildet, so dass man die laterale Ausdehnung amorpher Lamellen und ihrer Nachbarebene erkennen kann.
201 Neben der Verteilung amorpher und kristalliner Volumina sind die Kohlenstoffverteilung und das Spannungsfeld der amorphen Ausscheidungen auf die kristalline $Si$-Matrix visualisiert.
202 Man erkennt, dass die amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen nahezu komplement"ar angeordent sind.
203 Dies ist eine Folge der weiter oben erw"ahnten Kohlenstoffdiffusion.
204 Die amorphen Gebiete entziehen den anliegenden Ebenen den Kohlenstoff, womit dort die Amophisierungswahrscheinlichkeit sinkt.
205 Die Tatsache, dass sich der Kohlenstoff in den amorphen Gebieten befindet, kann man durch Vergleich mit der Kohlenstoffverteilung erkennen.
206 Auch das Gebiet hoher Druckspannungen stimmt ann"ahernd mit den amorphen Gebiet "uberein.
207 Es f"allt aber auf, dass die Ausdehnung der amorphen Gebiete etwas gr"osser als das Gebiet mit hoher Kohlenstoffkonzentration ist, und dass die Druckspannungen auch noch im Randgebiet der kristallinen Volumina existieren.
208 Dieses amorphe Randgebiet ist auf Grund der Druckspannungen trotz des niedrigen Kohlenstoffgehalts amorph.
209 In den kristallinen Gebieten der amorph/kristallinen Grenzfl"ache reicht auch das Spannungsfeld nicht mehr aus, um den amorphen Zustand zu stabilisieren.
211 \printimg{h}{width=15cm}{ac_cconc_ver1.eps}{Querschnittsansicht und Tiefenprofil des Kohlenstoffs in einem Target mit lamellaren Strukturen. Abgebildet ist der Kohlenstoff in amorphen und kristallinen Gebieten (schwarz), in kristallinen Gebieten (rot) und in amorphen Gebieten (gr"un).}{img:c_distrib}
212 Die komplement"are Anordnung der amorph/kristallinen Gebiete in aufeinander folgenden Ebenen wird nochmals in Abbildung \ref{img:c_distrib} deutlich.
213 Abgebildet ist die Querschnittsansicht und ein zugeh"origes Kohlenstofftiefenprofil der Simulation aus Abschnitt \ref{subsection:tem_sim_cmp}.
214 Bis zu einer Tiefe von $160 nm$ ist fast der komplette Kohlenstoff in kristallinen Volumina, da in diesem Tiefenbereich kaum amorphen Zellen existieren.
215 Die wenigen amorphen Zellen die in diesem Tiefenbereich existieren, haben durch den Diffusionsprozess Kohlenstoff gewonnen, der zwar keinen gro"sen Einfluss auf die Konzentration in kristallinen Gebieten, jedoch auf Grund des relativ kleinen amorphen Volumenanteils eine hohe Konzentrationen in den amorphen Gebieten zur Folge hat.
216 Der lineare Anstieg der Kohlenstoffkonzentration in den kristallinen und den gesamten Gebieten ist eine Folge des linear gen"aherten Implantationsprofils.
217 Mit Beginn der amorphen Lamellen sinkt der Kohlenstoffgehalt in den kristallinen Gebieten und steigt im Amorphen.
218 Die Schwankungen der Kohlenstoffkonzentration in den amorphen Gebieten h"angt mit der komplement"aren Anordnung der amorphen Gebiete in aufeinander folgenden Ebenen zusammen.
219 Diese Schwankungen sind auch in der Kohlenstoffkonzentration in amorphen und kristallinen Gebieten zu erkennen.
220 Man erkennt, dass abwechselnd Ebenen mit gro"sen und kleinen amorphen Anteil vorliegen.
222 \subsection{Zusammenfassung}
226 \section{Simulation "uber den gesamten Implantationsbereich}
228 Im Folgenden wird die zweite Version des Programms diskutiert.
229 Hier wird "uber den gesamten Implantationsbereich, von $0$ bis $700 nm$ simuliert.
230 Da nukleare Bremskraft und Implantationsprofil in einer Tiefe von $700 nm$ auf Null abgefallen sind, ist der Sputtervorgang m"oglich.
231 Jeder Simulationsdurchlauf entspricht tats"achlich einem implantierten Ion, da die mittlere Anzahl von St"o"sen die ein Ion im Target erf"ahrt ausgef"uhrt wird.
232 Sto"skoordinaten werden entsprechend der nuklearen Bremskraft gew"ahlt, der Einbau des Kohlenstoffs erfolgt gem"a"s des Implantationsprofils.
233 Die Sputterroutine wird gestartet sobald die implantierte Dosis der Dosis entspricht, die $3 nm$ Abtrag zur Folge hat.
235 \subsection{Reproduzierbarkeit der Dosisentwicklung}
236 \label{subsection:reproduced_dose}
239 \includegraphics[width=12cm]{dosis_entwicklung3.eps}
240 \caption{Vergleich der experimentellen und simulierten Dosisentwicklung bei a) $1,0 \times 10^{17} cm^{-2}$ bzw. $s= 40 \times 10^{6}$, b) $2,1 \times 10^{17} cm^{-2}$ bzw. $s= 80 \times 10^{6}$, c) $3,3 \times 10^{17} cm^{-2}$ bzw. $s= 120 \times 10^{6}$ und d) $4,3 \times 10^{17} cm^{-2}$ bzw. $s \approx 158 \times 10^{6}$ (exakte Dosis). Simulationsparameter: $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^{6}$.}
241 \label{img:dose_devel}
243 Abbildung \ref{img:dose_devel} zeigt den Vergleich der experimentellen und simulierten Dosisentwicklung.
244 Man erkennt eine gute "Ubereinstimmung zwischen Experiment und Simulation.
246 Nach $1,0 \times 10^{17} cm^{-2}$ hat sich noch keine durchgehende amorphe Schicht gebildet.
247 Im Gegensatz zu den anderen TEM-Aufnahmen sind die kristallinen Gebiete in Abbildung \ref{img:dose_devel} $a)$ auf Grund einer anderen Orientierung im TEM hell dargestellt.
248 Die dunklen Kontraste entsprechen den amorphen Gebieten.
249 Die stark dunklen Kontraste sind nach \cite{maik_da} auf Verspannungen von Defekten zur"uckzuf"uhren.
250 Diese Spannungen haben zun"achst nichts mit den hier diskutierten Druckspannungen der amorphen Gebiete zu tun.
251 Bis auf eine geringere Differenz in der Tiefe der amorphen Ausscheidungen wird das experimentelle Ergebnis von der Simulation sehr gut reproduziert.
252 Die etwas gr"ossere Ausdehnung der amorphen Gebiete in der Simulation liegt in diesem Fall am Unterschied der implantierten Dosis und der "aquivalenten simulierten Dosis ($\approx 1,1 \times 10^{17} cm^{-2}$) von ungef"ahr $0,1 \times 10^{17} cm^{-2}$.
253 Die Tatsache, dass sich bei der noch geringen Dosis weder im Experiment noch in der Simulation eine durchgehende amorphe Schicht gebildet hat, spricht daf"ur, dass die ballistische Amorphisierung allein nicht f"ur die Bildung einer durchgehenden Schicht ausreicht.
254 Der eingebrachte Kohlenstoff "ubernimmt demnach eine wichtige Rolle bei der Amorphisierungen.
255 Dies best"atigt die Modellannahmen einer kohlenstoffinduzierten Amorphisierung.
257 Bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $b)$) hat sich sowohl in Simulation als auch im Experiment eine durchgehende amorphe $SiC_x$-Schicht gebildet.
258 Bei dieser Dosis ist die Abweichung zwischen Simulation und Experiment am gr"o"sten.
259 Zum einen liegt die Schicht in der Simulation knapp $50 nm$ tiefer.
260 Zum anderen ist sie mit $125 nm$ rund $60 nm$ dicker als im Experiment.
262 Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $c)$) ist die Schichtdicke im Experiment auf $180 nm$ angewachsen.
263 Dasselbe gilt f"ur die Simulation.
264 Ausserdem erkennt man die Bildung lamellarer Ausscheidungen an der vorderen Grenzfl"ache.
265 Diese lamellaren Strukturen erkennt man ebenfalls im Simulationsergebnis.
266 Wieder f"allt der Shift in der Tiefe von ungef"ahr $40 nm$ zwischen Simulation und Experiment auf.
268 In Abbildung \ref{img:dose_devel} $d)$ ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 nm$ angewachsen.
269 Die lamellare Struktur wird deutlicher und der Tiefenbereich in dem sie vorkommen gr"osser.
270 Ausserdem werden die amorph/kristallinen Grenzfl"achen sch"arfer.
271 Dieses Ergebnis stimmt sehr gut mit der Simulation "uberein.
272 Zum einen w"achst die Schichtdicke im gleichem Ma"se an.
273 Weiterhin werden die lamellaren Strukturen besser erkennbar und ihre Ausdehnung in $z$-Richtung steigt an.
274 Vergleicht man die untere amorph/kristalline Grenzfl"ache mit dem Simulationsergebnis der vorangegangen Dosis, so erkennt man auch die Entwicklung zur sch"arferen Grenzfl"ache mit zunehmender Dosis.
276 Zusammenfassend ist zu sagen, dass trotz einiger Unterschiede, was die Ausdehnung der amorphen Schicht bei der Dosis $2,1 \times 10^{17} cm^{-2}$ und den Tiefenshift f"ur alle Dosen angeht, die Simulation das Experiment recht gut beschreibt.
277 Man erh"alt die amorphen Ausscheidungen, die f"ur niedrige Dosen noch keine durchgehende Schicht bilden.
278 Bei Erh"ohung der Dosis bildet sich eine durchgehende Schicht ohne Vorhandensein von lamellaren Strukturen.
279 Diese bilden sich erst nach weiterer Erh"ohung der Dosis.
280 Gleichzeitig dehnt sich die durchgehende Schicht aus.
281 Nach Implantation der kompletten Dosis wird die amorph/kristalline Grenzfl"ache sch"arfer, die lamellaren Strukturen deutlicher und der Tiefenbreich in dem sie auftreten gr"osser.
283 \subsection{Kohlenstoffverteilung}
286 \includegraphics[width=12cm]{carbon_sim.eps}
287 \caption{Kohlenstofftiefenprofile der Simulation f"ur verschiedene Dosen mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^{6}$, $d_r=0,05$.}
288 \label{img:carbon_sim}
290 Im Folgenden sollen die Kohlenstofftiefenprofile betrachtet und mit experimentell gewonnenen Daten aus \cite{maik_da}, die mittels Rutherford-R"uckstreu-Spektroskopie bestimmt wurden, verglichen werden.
292 Abbildung \ref{img:carbon_sim} zeigt die aus den Simulationsergebnissen gewonnenen Kohlenstoffverteilungen in Abh"angigkeit der Tiefe f"ur verschiedene Dosen.
293 Auff"allig ist die Verschiebung des Kohlenstoffmaximums mit steigender Dosis.
294 Diese ist durch das Absputtern der Oberfl"ache zu erkl"aren.
297 \includegraphics[width=12cm]{carbon_max_cmp.eps}
298 \caption{Vergleich der Kohlenstoffmaxima aus Simulation (rot) und Experiment (blau) in Abh"angigkeit der implantierten Dosis.}
299 \label{img:carbon_cmp}
301 Abbildung \ref{img:carbon_cmp} zeigt den Vergleich der Kohlenstoffmaxima aus Simulation und Experiment.
302 Im Falle der Simulation verschiebt sich das Maximum w"ahrend der Implantation der gesamten Dosis um ungef"ahr $30 nm$ zu niedrigeren Tiefen.
303 Die Abweichung der, aus der Simulation erhaltenen, zu den experiemntell bestimmten Maxima betr"agt $60$ bis $90 nm$.
304 Auff"allig ist auch die st"arker negative Steigung der linear gen"aherten Verschiebung des Kohlenstoffmaximums der Simulation im Gegensatz zum Experiment.
305 Extrapoliert man die, durch die drei experimentell bestimmten Messpunkte gelegte Gerade, kann man das Maximum f"ur die Dosis $D \approx 1,0 \times 10^{17} cm^{-2}$ absch"atzen.
306 W"ahrend der selben Dosis verschiebt sich hier das Maximum nur um etwa $15 nm$, was der H"alfte der Verschiebung bei der Simulation enspricht.
308 Die unterschiedliche Steigung weist auf dosisabh"angige Bremskr"afte und ein daraus resultierendes dosisabh"angiges Implantationsprofil hin.
309 {\em TRIM} betrachtet jedoch ein statisches Target und liefert somit ein nukleares Bremskraft- und Implantationsprofil, welches diese Effekte nicht beinhaltet.
311 Auch der anf"angliche Unterschied in der Kohelnstoffkonzentration zwischen Simulation und Experiment ist auf den Unterschied des durch {\em TRIM} ermittelten Implantationsprofils zum realen Profil zur"uckzuf"uhren.
312 Es sind aber auch Ungenauigkeiten bei der experimentellen Ermittlung der Kohlenstoffverteilung aus den RBS-Spektren denkbar.
313 Mit dem Shift in der Kohlenstoffverteilung ist der Tiefenunterschied der Lage der amorphen Schicht erkl"art.
316 \includegraphics[width=12cm]{ac_cconc_ver2.eps}
317 \caption{Cross-Section und Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. Helle Gebiete sind amorph, dunkle Gebiete kristallin. Kohlenstoff in kristallinen Gebieten (gr"un), in amorphen Gebieten (rot) und gesamter Kohlenstoff (schwarz) sind abgebildet.}
318 \label{img:c_distrib_v2}
320 In Abbildung \ref{img:c_distrib_v2} ist die Cross-Section aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origem Implantationsprofil gezeigt.
321 Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten.
322 Ab einer Tiefe von $150 nm$ sind amorphe Ausscheidungen zu erkennen.
323 Der Kohlenstoffgehalt in den kristallinen Volumen sinkt.
324 Gleichzeitigt steigt der Kohlenstoffgehalt in den amorphen Gebieten.
325 Ab einer Tiefe von $350 nm$ haben sich lamellare amorphe Ausscheidungen gebildet.
326 Im Kohlenstoffprofil sind Schwankungen in der Gesamtkonzentration und der Konzentration in amorphen Gebieten zu sehen (siehe Pfeil).
327 Die Ursache liegt wieder an der komplement"aren Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen.
328 Es wechseln sich Ebenen mit hohen und niedrigen amorphen Anteil ab.
329 Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung eine Folge der Diffusion.
330 Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff.
331 Die lokale Amorphisierungswahrscheinlichkeit wird erh"oht w"ahrend sie in der Nachbarebene kleiner wird.
332 Die lamellaren Strukturen entstehen.
333 Kurz vor $400 nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten auf Null ab.
334 Der gesamte Kohlenstoff befindet sich in den amorphen Gebieten.
335 Hier beginnt die durchgehende amorphe Schicht.
336 Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 nm$ erreicht hat f"allt sie steil ab.
337 In einer Tiefe von $580 nm$ beginnt der Kohlenstoff wieder in den kristallinen Gebieten anzuwachsen.
338 Dies entspricht dem Ende der durchgehenden amorphen Schicht.
339 Die Konzentration im Kristallinen steigt, bis wieder der gesamte Kohlenstoff in den kristallinen Gebieten ist.
343 \includegraphics[width=7cm]{z_zplus1_ver2.eps}
345 \caption{Amorph/Kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ im Tiefenbereich der lamellaren Strukturen.}
346 \label{img:z_zplus1_ver2}
348 Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ im Tiefenbereich der lamellaren Strukturen.
349 Sie best"atigt die Vermutung der komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinander folgenden Ebene in diesem Tiefenbereich.
350 Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor.
352 \subsection{Position und Ausdehnung der amorphen Phase}
355 \includegraphics[width=12cm]{position_al.eps}
356 \caption{Simulierte Position und Ausdehnung der amorphen Schicht in Abh"angigkeit der Dosis (blau, rot). Dosisabh"angiges Kohlenstoffmaximum (gr"un).}
357 \label{img:position_sim}
359 Abbildung \ref{img:position_sim} zeigt die, aus der Simulation ermittelte Position und Ausdehnung der durchgehenden amorphen $SiC_x$-Schicht.
360 Zus"atzlich ist der Verlauf des Kohelnstoffmaximums eingezeichnet.
361 Die amorphe Schicht erstreckt sich um das Kohlenstoff-Verteilungsmaximum.
362 Die Ausdehnung stimmt gut mit den Werten aus \cite{maik_da} "uberein.
363 Die dort gefundene Breite der Schicht bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ liegt mit knappen $100 nm$ schon n"aher an den $125 nm$ Breite aus dem Simulationsergebnis.
364 Dieser Wert ist jedoch nicht im Einklang mit der TEM-Aufnahme.
365 Wie erwartet ist ausserdem der $50 nm$-Shift in der Position der amorphen Schicht vorhanden.
367 Die Tabellen \ref{table:interface_conc_exp} und \ref{table:interface_conc_sim} fassen die Kohlenstoffkonzentration an der vorderen und hinteren Grenzfl"ache f"ur Experiment und Simulation in Abh"angigkeit der Dosis zusammen.
370 \begin{tabular}{|c|c|c|}
372 Dosis & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an vorderer Grenzfl"ache \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an hinterer Grenzfl"ache \end{center} \end{minipage} \\
374 $2,1 \times 10^{17} cm^{-2}$ & 16 $at. \%$ & 13 $at. \%$ \\
376 $3,3 \times 10^{17} cm^{-2}$ & 13 $at. \%$ & 14 $at. \%$ \\
378 $3,4 \times 10^{17} cm^{-2}$ & 14 $at. \%$ & 12 $at. \%$ \\
382 \caption{Experimentell bestimmte Kohlenstoffkonzentration an den Grenzfl"achen der amorphen Schicht in Abh"angigkeit der Dosis.}
383 \label{table:interface_conc_exp}
387 \begin{tabular}{|c|c|c|}
389 Durchl"aufe & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an vorderer Grenzfl"ache \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an hinterer Grenzfl"ache \end{center} \end{minipage} \\
391 $80 \times 10^6$ & 15,21 $at. \%$ & 14,71 $at. \%$ \\
393 $120 \times 10^6$ & 14,65 $at. \%$ & 14,06 $at. \%$ \\
395 $159 \times 10^6$ & 16,08 $at. \%$ & 14,76 $at. \%$ \\
399 \caption{Durch die Simulation ermittelte Kohlenstoffkonzentration an den Grenzfl"achen der amorphen Schicht in Abh"angigkeit der Anzahl der Durchl"aufe.}
400 \label{table:interface_conc_sim}
402 Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung.
403 Ausserdem stimmen auch die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 \%$ gut "uberein.
404 Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft eine untergeordnete Rolle im Amorphisierungsprozess einnimmt.
405 Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehenden amorphen $SiC_x$-Schicht.
407 \subsection{Variation der Simulationsparameter}
409 Im Folgenden sollen Ergebnisse mit variierten Simulationsparametern vorgestellt und interpretiert werden.
410 Dabei wird von dem Satz der Parameter aus Abschnitt \ref{subsection:reproduced_dose} ausgegangen und einzelne Parameter variiert.
413 \includegraphics[width=12cm]{var_sim_paramters.eps}
414 \caption{Variation der Simulationsparameter. Ausgangssituation in a): $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^6$, $s \approx 159 \times 10^6$. Variation des Parameters b) $d_r$, c) $p_b$, d) $p_c$ und e) $p_s$.}
415 \label{img:var_sim_paramters}
417 Abbildung \ref{img:var_sim_paramters} $a)$ zeigt zum Vergleich die Simulation mit dem Ausgangsparametersatz $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^6$, $d_r=0,05$ und $s \approx 159 \times 10^6$.
419 In Abbildung \ref{img:var_sim_paramters} $b)$ wurde die Diffusion durch einen gr"o"seren Wert des Parameters $d_r$ erh"oht.
420 Es bildet sich keine durchgehende amorphe Schicht.
421 Man erkennt fast nur noch amorphe Lamellen.
422 Die hohe Diffusionsrate des Kohlenstoffs bewirkt, dass selbst im Implantationsmaximum zuf"allig amorph gewordene Gebiete ihren kristallinen Nachbarebenen zu schnell den Kohlenstoff entziehen.
423 Dieser Prozess ist notwendig f"ur die Bildung der Lamellen, jedoch verhindert er in diesem Fall die Bildung einer durchgehenden amorphen $SiC_x$-Schicht.
424 Die Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen kristallinen Gebieten ist daher zu klein.
425 Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehenden amorphen Schicht sowie der Bildung der Lamellen.
427 Der Versuch die Bildung der durchgehenden amorphen Schicht in geringeren Tiefen zu erzeugen ist in \ref{img:var_sim_paramters} $c)$ abgebildet.
428 Dazu wurde der Einfluss der ballistischen Amorphisierung $p_b$ erh"oht.
429 Die Anzahl amorpher Gebiete steigt.
430 Dies ist verst"andlich, da die Amorphisierungswahrscheinlichkeit unabh"angig von Lage oder dem Zustand steigt.
431 Die durchgehende Schicht nimmt nach oben hin auf Kosten der lamellaren Ausscheidungen zu.
432 Die allgemein h"ohere Wahrscheinlichkeit der Amorphisierung beg"unstigt eine komplette Amorphisierung im lamellaren Bereich.
433 Da gleichzeitig die Rekristallisationswahrscheinlichkeit sinkt, haben die ballistisch amorphisierten Gebiete eine h"ohere Chance sich durch implantierten beziehungsweise diffundierten Kohlenstoff zu stabilisieren.
434 Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe.
436 In Betracht auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} $b)$ bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} $d)$ der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert.
437 Wie erwartet hat die Ausdehnung der amorphen Schicht abgenommen.
438 Mit knapp $120 nm$ ist sie jedoch zu klein im Vergleich mit den experiemntellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$.
439 Sie erstreckt sich weiterhin um das Kohlenstoffmaximum.
440 Lamellare Strukturen sind, ausser an den kristallinen Einschl"ussen im Beginn der durchgehenden Schicht nicht zu erkennen.
441 An diesem Ergebnis erkennt man wieder sehr gut, dass die kohlenstoffinduzierte Amorphisierung den wichtigsten Amorphisierungsmechanismus darstellt.
443 Der Einfluss der spannungsinduzierten Amorphisierung ist in Abbildung \ref{img:var_sim_paramters} $e)$ zu sehen.
444 Hier wurde der Parameter $p_s$ erh"oht.
445 Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung der Bereiche im Target, in denen selbst nur wenig Kohlenstoff vorhanden ist.
446 Die amorphe Phase erstreckt sich wieder um das Kohlenstoffmaximum.
447 Die Konzentration am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 at. \%$.
448 Da in den Teil f"ur die spannungsinduzierte Amorphisierung auch die Kohelnstoffkonzentration eingeht, ist dies nicht weiter verwunderlich.
449 Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringen Kohlenstoffanteil sehr unwahrscheinlich ist.
450 Der Diffusionsprozess verliert somit an Bedeutung.
451 Dies f"uhrt letztendlich zur kompletten Amorphisierung der Bereiche oberhalb und eingeschlossen der genannten Konzentration.
452 Lamellare Strukturen werden nicht gebildet.
454 \subsection{Herstellung grosser Bereiche lamellarer Strukturen durch einen zweiten Implantationsschritt}
457 \includegraphics[width=12cm]{nel_2mev.eps}
458 \caption{Durch {\em TRIM} ermittelte nukleare Bremskraft von $2 MeV$ $C^+$ in Silizium.}
462 \includegraphics[width=12cm]{impl_2mev.eps}
463 \caption{Durch {\em TRIM} ermitteltes Implantationsprofil von $2 MeV$ $C^+$ in Silizium.}
464 \label{img:impl_2mev}
466 Im Folgenden soll gepr"uft werden, ob ein zweiter Implantationsschritt einen geeigneten Mechanismus zur Erzeugung breiter lamellarer Bereiche darstellt.
468 Die Idee ist folgende.
469 Als Grundlage dient ein Silizium Target, das wie bisher mit $180 keV$ $C^{+}$ beschossen wird.
470 Ein entsprechendes Implantationsprofil stellt sich ein.
471 Allerdings soll das Target durchgehend kristallin sein.
472 Dies l"asst sich experimentell durch Erh"ohung der Targettemeperatur erreichen.
474 Das kristalline Target wird dann mit $2 MeV$ $C^{+}$ bei der gewohnten Implantationstemperatur von $150 \, ^{\circ} \mathrm{C}$ implantiert.
475 Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} zeigen das durch {\em TRIM} ermittelte nukleare Bremskraft- und Implantationsprofil.
476 Das stark verrauschte nukleare Bremskraftprofil wird f"ur die Simulation in den ersten $1,5 \mu m$ durch eine lineare Regression gen"ahert (gr"une Gerade in Abbildung \ref{img:nel_2mev}).
477 Sie ist nahzu konstant in dem bisher betrachteten Bereich um das Kohlenstoffmaximum.
478 St"o"se sind in diesem Bereich demnach gleichwahrscheinlich bez"uglich der Tiefe.
479 Auf Grund der hohen Energie kommt kaum noch weiterer Kohlenstoff in den bisher relevanten Tiefenbereich zur Ruhe.
481 Bei geeigneter Wahl der Ausgangskonzentration wird nicht der komplette kohlenstoffhaltige Bereich amorphisieren.
482 Die Konzentration sollte idealerweise so hoch sein, dass die kohlenstoffinduzierte Amorphisierung zusammen mit den Spannungsbeitrag amorpher Nachbarn gerade hoch genug ist, um die Stabilit"at der amorphen Phase zu gew"ahrleisten.
483 Dies sollte zur Bildung amorpher Lamellen f"uhren.
484 Wird gen"ugend lang implantiert, tr"agt die Diffusion des Kohlenstoffs zur Stabilisierung der amorphen Ausscheidungen bei.
486 F"ur die Simulation werden dazu die Werte f"ur die Gewichtung der Amorphisierungsbeitr"age aus Abschnitt \ref{subsection:reproduced_dose} "ubernommen, da das gleiche Materialsystem beschrieben wird.
487 Ausserdem wird das alte Bremskraft- und Implantationsprofil durch das Profil in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt.
488 Im Gegensatz zur nuklearen Bremskraft spielt das Implantationsprofil eine untergeordnete Rolle, weshalb auf ein Anfitten der Kurve verzichtet werden kann.
489 Es werden nur sehr wenige Ionen im betrachteten Bereich inkorporiert.
490 Auf Grund der h"oheren Energie verursachen die Ionen durchschnittlich weniger Kollisionen in dem betrachteten Tiefenbereich von $0$ bis $700 nm$.
491 Nach Auswertung der {\em TRIM}-Datei trifft das Ion durchschnittlich ungef"ahr $20$ Zellen des Simulationsfensters.
492 Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat, da die nukleare Bremskraft im relevanten Bereich nahezu konstant ist.
493 Der einzige Unterschied zum Experiment sollte der Tiefenunterschied der amorphen Ausscheidungen sein, nicht aber deren Ausdehnung und Struktur.
494 Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden ausserdem die Diffusionsparameter beibehalten.
497 \includegraphics[width=12cm]{2nd_impl_4_3.eps}
498 \caption{Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$ in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}
499 \label{img:2nd_impl_4_3}
501 Abbildung \ref{img:2nd_impl_4_3} zeigt die Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$.
502 Als Ausgangskonfiguration wurde eine Dosis von $4,3 \times 10^{17} cm^{-2}$ von $180 keV$ schnellen Kohlenstoff ins Silizium gew"ahlt.
503 Es reicht schon eine Dosis von $5,4 \times 10^{14} cm{-2}$ (Abbildung \ref{img:2nd_impl_4_3} $e)$) im zweiten Implantationsschritt f"ur eine komplette Amorphisierung des kohlenstoffhaltigen Bereichs.
504 Diese Ausgangskonzentration ist also nicht geeignet f"ur die Herstellung breiter lamellarer Ausscheidungen.
505 Es ist zu viel Kohlenstoff vorhanden.
506 Der kohlenstoffhaltige Bereich amorphisiert schon vor dem ersten Diffusionsschritt, der notwendig f"ur die Selbstorganisation der lamellaren Ausscheidungen ist.
509 \includegraphics[width=12cm]{2nd_impl_1_1.eps}
510 \caption{Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$ in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $100 \times 10^{6}$ entspricht einer implantierten Dosis von $2,71 \times 10^{17} cm^{-2}$.}
511 \label{img:2nd_impl_1_1}
513 In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $20 at. \%$ liegt.
514 Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim}, bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht.
515 Das Ergebnis ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt.
516 Nach $20 \times 10^{6}$ Schritten (Abbildung \ref{img:2nd_impl_1_1} $a)$), was einer Dosis von $0,54 \times 10^{17} cm^{-2}$ entspricht, sind ballistisch entstandedne amorphe Ausscheidungen zu erkennen.
517 Es hat sich keine durchgehende Schicht gebildet.
518 Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus um den kompletten kohlenstoffhaltigen Bereich zu Amorphisieren.
519 Lamellen sind noch nicht zu erkennen.
520 Auf Grund der spannungsinduzierten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert.
521 Die Diffusionsroutine kann ausgef"uhrt werden, bevor das Target komplett amorphisiert ist.
522 Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohelnstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht.
523 Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen.
524 Man erkennt sehr sch"on die Dosisentwicklung zu immer sch"arfer werdenden Lamellen, deren Tiefenbereich zunimmt (Abbildung \ref{img:2nd_impl_1_1} $b)$-$e)$).
525 Man kann davon ausgehen, dass bei fortgef"uhrter Implantation, die lamellare Struktur noch sch"arfer wird.
526 Da kaum Kohelnstoff der $2 MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs.
527 Es k"onnte prinzipiell so lang implantiert werden, bis der kristalline Teil oberhalb der amorphen Lamellen durch Sputtern abgetragen ist.
528 Ein freigelegter Bereich scharf strukturierter amorpher lamellarer Ausscheidungen ist zu erwarten.
530 Die Herstellung breiter Bereiche von amorphen lamellaren Auscheidungen durch einen zweiten Implantationsschritt ist laut Simulationsergebnis demnach m"oglich.
531 Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohelnstoffgehalt von $10$ bis $20 at. \%$ im Implantationsmaximum hat.