2 \label{chapter:ergebnisse}
4 Im Folgenden werden die Ergebnisse der Simulation vorgestellt.
5 Dabei werden Simulationsergebnisse mit experimentellen Ergebnissen aus \cite{maik_da} verglichen.
7 Durch Variation der Simulationsparameter wird dar"uber hinaus der in Kapitel \ref{chapter:modell} vorgestellte Bildungsmechanismus der amorphen $SiC_x$-Phasen in $Si$ untersucht.
8 Hierbei wird vor allem der Einfluss einzelner Simulationsparameter, wie Diffusion und St"arke der Druckspannungen, auf den Selbstorganisationsprozess betrachtet.
10 Unter der Annahme der Richtigkeit des Modells und seiner Umsetzung k"onnen sehr leicht Aussagen "uber die Struktur und Zusammensetzung an jedem beliebigen Ort des Targets w"ahrend des Ordnungsprozesses gemacht werden.
11 Diese Information ist experimentell schwer zug"anglich.
13 Zun"achst werden die Ergebnisse der Simulationen bis $300 \, nm$ Tiefe vorgestellt.
14 Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich diskutiert.
16 \section{Simulation bis 300 nm Tiefe}
18 Erste Simulationen werden mit {\em NLSOP} Version 1 in einem begrenzten Tiefenbereich durchgef"uhrt um festzustellen, ob mit dem Modell und der verwendeten Monte-Carlo-Implementierung "uberhaupt geordnete Lamellenstrukturen reproduziert werden k"onnen und welche Prozesse dabei entscheidend sind.
19 Daf"ur ist eine genaue Kenntnis der Dosis nicht wichtig.
20 Desweiteren kommt es hier nicht auf die exakte Tiefenposition der Ausscheidungen an, weshalb Sputtereffekte vernachl"assigt werden k"onnen.
22 In jedem Durchlauf wird nur ein Sto"sprozess, der zur Amorphisierung beziehungsweise Rekristallisation eines Targetvolumens f"uhren kann, betrachtet.
23 Diffusion des Kohlenstoffs von kristallinen in amorphe Gebiete findet statt.
24 Sputtereffekte k"onnen wegen fehlender Information "uber Kohlenstoffgehalt und die amorph/kristalline Struktur in tieferen Ebenen nicht beachtet werden.
26 \subsection{Erste Simulationsdurchl"aufe}
28 In ersten Simulationen wird untersucht, "uber welche Entfernung die von den amorphen Nachbarzellen ausgehenden Spannungen ber"ucksichtigt werden m"ussen.
29 Ist ein Einfluss der weiter entfernten Zellen vernachl"assigbar, so l"asst sich ein Abbruchradius f"ur die Behandlung der Spannungen definieren.
30 Ein Abbruchkriterium ist zum einem wegen der Behandlung eines in $x-y$-Richtung unendlich ausgedehnten Festk"orpers, realisiert durch periodische Randbedingungen, und zum anderen wegen schnellerer Berechnung der Druckspannungen n"otig.
32 Eine Erh"ohung des Abbruchradius von $r=5$ auf $r=10$ Volumina, was einer L"ange von $15$ beziehungsweise $30 \, nm$ entspricht, zeigt eine gr"o"sere Menge an amorphen Gebieten.
33 Die lamellare Ordnung der Ausscheidungen steigt jedoch nicht an.
34 Dies ist in Abbildung \ref{img:first_sims} a) und b) zu erkennen.
35 Aus diesem Grund wurde der Abbruchradius f"ur alle weiteren Simulationen auf $r=5$ Volumen gesetzt.
36 \printimg{h}{width=15cm}{first_sims.eps}{Cross-Section verschiedener Simulationsergebnisse. Simulationsparameter (wenn nicht anderst angegeben): $p_b=0,01$, $p_c=0,05$, $p_s=0,05$, $r=5$, $d_v=100$, $d_r=0,5$, $s=3 \times 10^5$. Variierte Parameter: b) $r=10$, c) $p_b=0,05$, d) $p_s=0,1$.}{img:first_sims}
38 Die Simulationen wurden zun"achst mit sehr geringen Schrittzahlen (zwischen $2$ und $4 \times 10^{5}$ Schritten) durchgef"uhrt.
39 Voraussetzung f"ur die Entstehung amorpher Gebiete bei dieser geringen Schrittzahl sind hohe Werte f"ur die zur Amorphisierung beitragenden Simulationsparameter $p_b$, $p_c$ und $p_s$ (Gr"o"senordnungsbereich $10^{-2}$).
40 Die Erh"ohung der Parameter f"ur die ballistische Amorphisierung (Abbildung \ref{img:first_sims} c)) und selbst die der spannungsunterst"utzten Amorphisierung (Abbildung \ref{img:first_sims} d)) "au"sern sich in einer gr"o"seren Menge an amorphen Gebieten.
41 Eine klare Lamellenbildung ist unter diesen Bedingungen nicht zu erkennen.
43 Macht man die Parameter jedoch sehr viel kleiner und erh"oht im Gegenzug die Schrittzahl, so erwartet man, dass zuf"allig amorphisierte Zellen ohne amorphe Nachbarn mit aller Wahrscheinlichkeit im Falle eines Sto"ses rekristallisieren werden.
44 Ein amorphes Volumen, das lateral selbst eine amorphe Nachbarschaft hat, wird sich selbst und die amorphen Nachbarn stabilisieren.
45 Dies f"uhrt zu einer Stabilisierung und gef"orderten Ausbildung lamellarer amorpher $SiC_x$-Ausscheidungen.
46 F"ur den Selbstorganisationsprozess sind daher eine h"ohere Schrittzahl und kleinere Werte der erw"ahnten, zur Amorphisierung beitragenden Simulationsparameter gefordert.
47 Das System erreicht so nicht bereits nach einer kurzen Schrittfolge seine Endkonfiguration, die stark von der Statistik der einzelnen Amorphisierungsprozesse gepr"agt ist.
48 Anstelle dessen stellt sich im System sukzessive eine Ordnung ein, die unter den gegebenen Regeln m"oglichst stabil ist.
50 Die Notwendigkeit der niedrigen Amorphisierungsparameter, welche eine fr"uhe komplette Amorphisierung des Targets verhindern, steht im Einklang mit den Beobachtungen aus \cite{lindner_appl_phys}.
51 Aufgrund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen erwartet man bei den hohen Targettemperaturen keine Amorphisierung.
52 Die Ursache des stattfindenden Amorphisierungsprozesses liegt an der erh"ohten Kohlenstoffkonzentration mit steigender Dosis.
53 Es handelt sich um kohlenstoffinduzierte Amorphisierung.
55 \subsection{Vergleich von Simulationsergebnis und experimentell beobachteter Struktur}
56 \label{subsection:tem_sim_cmp}
58 Im Folgenden wurde f"ur Simulationen mit $X,Y=50$ beziehungsweise $X,Y=64$ die Anzahl der Durchl"aufe auf $20$ beziehungsweise $30 \times 10^{6}$ gesetzt.
59 Sieht man "uber die Tatsache hinweg, dass bei einem Durchlauf nicht die f"ur ein Ion durchschnittliche Anzahl der St"o"se ausgef"uhrt wird, kann eine "Aquivalenzdosis angegeben werden.
60 Betrachtet man einen Durchlauf als ein implantiertes Ion, so ergibt das nach \eqref{eq:dose_steps} eine Dosis von $0,89$ beziehungsweise $0,81 \times 10^{17} cm^{-2}$.
62 \printimg{h}{width=15cm}{if_cmp3.eps}{Vergleich von a) Simulationsergebnis und b) experimentellen Ergebnis einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 keV \quad C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. Simulationsparameter: $s = 3 \times 10^{7}$, $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_v=10$, $d_r=0,5$.}{img:tem_sim_comp}
64 Zun"achst wird nach einem Satz von Parametern gesucht, der die experimentellen Ergebnisse reproduziert.
65 Davon ausgehend k"onnen dann einzelne Parameter variiert und ihre Auswirkungen studiert werden.
67 Tats"achlich k"onnen Parameter eingestellt werden, die die experimentell gefundene Ordnung zufriedenstellend reproduzieren.
68 Abbildung \ref{img:tem_sim_comp} zeigt den Vergleich zwischen Simulationsergebnis und dem experimentellen Befund aus Abbildung \ref{img:xtem_img}.
69 Wie man erkennt, ist die Simulation in der Lage lamellare Strukturen zu erzeugen.
70 Diese sind im Tiefenbereich von $200$ bis $300 \, nm$ zu erkennen.
71 Dies entspricht etwa dem Tiefenbereich, in dem auch mit Cross-Section TEM lamellare Ausscheidungen f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$ bei $180 \, keV$ $C^+$-Implantation gefunden werden.
72 Durch einfaches Abz"ahlen der Lamellen in diesem Tiefenbereich am Rand der TEM-Aufnahme beziehungsweise des Simulationsergebnisses erkennt man, dass auch die Anzahl der Lamellen pro Tiefenintervall recht gut reproduziert wird.
73 Desweiteren stimmen sogar die durchschnittlichen L"angen der Lamellen in Experiment und Simulation "uberein.
75 Eine objektive Methode der Messung der \dq Lamellarigkeit\dq{} stellt die Fouriertransformation dar.
76 Hierzu wurde das Programm {\em dft} (kurz f"ur {\bf d}iscrete {\bf f}ourier {\bf t}ransform) geschrieben.
77 Dieses schneidet die untersten $50 \times 50$ beziehungsweise $64 \times 64$ Bildpunkte der Querschnittsansicht aus und wendet darauf eine $2d$-Fouriertransformation an.
78 Dabei wird die Intensit"at des fouriertransformierten Bildes skaliert, um Bildpunkte au"serhalb der Ortsfrequenz Null besser erkennen zu k"onnen.
80 \printimg{h}{width=8cm}{sim_tem_cmp_dft.eps}{Vergleich der Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}. a) Simulation, b) Experiment.}{img:dft_tem_sim_cmp}
81 Abbildung \ref{img:dft_tem_sim_cmp} zeigt die Fouriertransformationen der Ortsverteilungen aus Abbildung \ref{img:tem_sim_comp}.
82 Die horizontalen Lamellen f"uhren in der Fouriertransformierten erwartungsgem"a"s zu vertikalen Streifen.
84 Durch einen Linescan einer gewissen Breite (hier: $\Delta f_x = \pm \frac{3}{64 \times 3 \, nm}$) f"ur die Ortsfrequenz $f_x=0$ erh"alt man Information "uber die Periodizit"at der Lamellen in $z$-Richtung.
85 Durch die Intensit"atsskalierung lassen sich Linescans gut miteinander vergleichen, da deren Intensit"atsverlauf in der selben Gr"o"senordnung liegt.
86 \printimg{h}{width=12cm}{tem_cmp_ls.eps}{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}.}{img:tem_cmp_ls}
87 Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation aus Abbildung \ref{img:dft_tem_sim_cmp}.
88 F"ur den Vergleich mit der TEM-Aufnahme wurde der linke Teil der Aufnahme abgeschnitten und auf $100$ Bildpunkte in der H"ohe skaliert.
89 Im Gegensatz zur Simulation hat die TEM-Aufnahme eine sehr hohe mittlere Helligkeit und wenig Kontrast, was ein gro"ses Maxima bei der Ortsfrequenz Null zur Folge hat.
90 Daher sind Maxima anderer Frequenzen schlecht zu erkennen.
91 Im Folgenden wird deshalb die Fouriertransformation vor allem zum Vergleich zwischen Simulationsergebnissen verwendet.
93 \subsection{Notwendigkeit der Diffusion}
94 \label{subsection:ess_diff}
96 Im Folgenden werden die Diffusionsparameter variiert um deren Auswirkungen auf die Ausscheidungsanordnung sichtbar zu machen.
97 Da die kohlenstoffinduzierte Amorphisierung den wahrscheinlich wichtigsten Beitrag zur Amorphisierung liefert, liegt es auf der Hand, dass die Kohlenstoffdiffusion erheblichen Einfluss auf den Selbstorganisationsvorgang hat.
99 \printimg{h}{width=13cm}{diff_einfluss.eps}{Vergleich von Simulationen mit unterschiedlicher Diffusionsrate $d_r$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,004$, $d_v=10$, $s=20 \times 10^6$. Variierte Diffusion: a) $d_r^z=d_r^{x,y}=0,2$, b) $d_r^z=d_r^{x,y}=0,5$, c) $d_r^z=0$, $d_r^{x,y}=0,5$. Die Abbildung zeigt die Querschnitte a) - c) und deren Fouriertransformierte d) - f).}{img:diff_influence}
100 \printimg{h}{width=13cm}{diff_einfluss_ls.eps}{Linescan "uber die Orstfrequenz $f_x=0$ der Fouriertransformierten aus \ref{img:diff_influence} mit a) $d_r^z=d_r^{x,y}=0,5$, b) $d_r^z=d_r^{x,y}=0,2$ und c) $d_r^z=0$, $d_r^{x,y}=0,5$.}{img:diff_influence_ls}
101 Abbildung \ref{img:diff_influence} zeigt den Vergleich von Ergebnissen mit unterschiedlicher Diffusionsrate $d_r$.
102 Zus"atzlich kann die Diffusion in $z$-Richtung unterdr"uckt werden ($d_r^z=0$).
103 Unter der Querschnittsansicht ist die jeweilige Fouriertransformierte abgebildet.
104 Die beiden Querschnitte in Abbildung \ref{img:diff_influence} b) und c) entsprechen identischen Simulationsdurchl"aufen, wobei in Abbildung \ref{img:diff_influence} c) die Diffusion in $z$-Richtung unterdr"uckt wurde.
105 Lamellare Strukturen beobachtet man nur im Falle mit Diffusion in $z$-Richtung.
106 Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen.
107 Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohlenstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation.
108 Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt aufgrund der wachsenden Druckspannungen an.
109 Da diese spannungsunterst"utzt amorphisierten Gebiete fortan ebenfalls Senken f"ur diffundierenden Kohlenstoff bilden, ist damit eine immer kleiner werdende Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen Nachbarebenen verbunden.
110 Dieser Prozess f"ordert ganz offensichtlich die Ausbildung lamellarer Strukturen.
111 Das Ergebnis zeigt die Notwendigkeit der lokalen Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete, insbesondere der Diffusion in $z$-Richtung.
113 Weiterhin erkennt man einen Zusammenhang zwischen der Diffusionsrate $d_r$ und dem Tiefenintervall, in dem sich lamellare Strukturen gebildet haben.
114 Die Erh"ohung der Diffusionsrate von $d_r=0,2$ auf $d_r=0,5$ hat eine Vergr"o"serung des Tiefenintervalls von ungef"ahr $60$ auf $150 \, nm$ zur Folge.
115 Bei hoher Diffusionsrate diffundiert der Kohlenstoff schneller in amorphe Volumina.
116 Dies stabilisiert die amorphe Ausscheidung.
117 Geringe Diffusionsraten verhindern ein schnelles Anh"aufen von Kohlenstoff in den amorphen Volumina.
118 Die amorphen Ausscheidungen sind nicht sehr stabil und werden mit hoher Wahrscheinlichkeit rekristallisieren.
119 Dies "au"sert sich auch in einer kleineren Anzahl an amorphen Gebieten insgesamt, f"ur die kleinere Rate $d_r=0,2$.
120 Stabile amorphe Ausscheidungen treten erst ab einer Tiefe von ungef"ahr $240 \, nm$ auf.
121 Hier ist die mittlere Kohlenstoffkonzentration hoch genug, um bei der hier herrschenden nuklearen Bremskraft etwas Amorphes zu erhalten.
123 Abbildung \ref{img:diff_influence_ls} zeigt die Linescans der fouriertransformierten Cross-Sections aus Abbildung \ref{img:diff_influence}.
124 Abbildung \ref{img:diff_influence_ls} c) geh"ort zur Simulation ohne Diffusion in $z$-Richtung.
125 Der Linescan zeigt kein Maximum au"ser bei der Ortsfrequenz Null.
126 Dies steht im Einklang mit dem in Abbildung \ref{img:diff_influence} c) gezeigtem Querschnitt.
127 Es haben sich keine lamellaren Ausscheidungen gebildet.
128 Bei den in Abbildung \ref{img:diff_influence_ls} a) und b) gezeigten Spektren ist die Diffusion stark und man erh"alt deutlich lamellare Ausscheidungen.
129 Dies "au"sert sich auch am Linescan in den lokalen Maxima in der Intensit"at bei Ortsfrequenzen ungleich Null.
130 Ein Maximum ist zum Beispiel f"ur die Ortsfrequenz $f_z \approx 0,11 \, nm^{-1}$ in Abbildung \ref{img:diff_influence} b) zu erkennen.
131 Diese Frequenz entspricht einer Peridizit"at der Lamellen von $f_z^{-1} \approx 9,1 \, nm$.
132 Dies entspricht einer Anzahl von ungef"ahr $17$ Lamellen in einem Tiefenbereich von $150 \, nm$.
133 Eine "ahnlich gro"se Zahl erh"alt man tats"achlich durch Abz"ahlen der Lamellen am linken Rand der Cross-Section aus Abbildung \ref{img:diff_influence} b).
134 Die Fouriertransformierte stellt also ein geeignetes Mittel zur objektiven Messung der \dq Lamellarigkeit\dq{} dar.
135 Auff"allig ist das Vorkommen von zwei ausgepr"agten Maxima in Abbildung \ref{img:diff_influence_ls} a).
136 Die Lamellenstrukturen in Abbildung \ref{img:diff_influence} a) setzen sich demnach wesentlich aus "Uberlagerungen von Ortswellen dieser zwei Frequenzen zusammen.
137 Tats"achlich findet man Lamellen haupts"achlich in den zwei entsprechenden Abst"anden vor.
139 \printimg{h}{width=15cm}{low_to_high_dv.eps}{Simulationsergebnisse f"ur a) $d_v=10$, b) $d_v=100$, c) $d_v=1000$, d) $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$.}{img:dv_influence}
140 \printimg{h}{width=13cm}{ls_dv_cmp.eps}{Linescan der fouriertransformierten Cross-Sections von Simulationen mit $d_v=10$ und $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$.}{img:dv_ls}
141 Neben der Diffusionsrate $d_r$ beschreibt der Simulationsparameter $d_v$ den Diffusionsprozess.
142 Er gibt an, wie oft der Diffusionsschritt ausgef"uhrt wird (alle $d_v$ Schritte) und hat den Zweck, die Rechenzeit des Programms durch Reduzierung des besonders zeitaufw"andigen Diffusionsschrittes kurz zu halten.
143 In Abbildung \ref{img:dv_influence} sind Simulationsergebnisse f"ur verschiedene $d_v$ abgebildet.
144 Erstaunlicherweise scheint dieser Parameter keinen allzu gro"sen Einfluss auf das Ergebnis zu haben.
145 Das liegt daran, dass selbst die Anzahl von $10^4$ Schritten im Vergleich zur Anzahl der W"urfel im Target von $50 \times 50 \times 100 = 25 \times 10^{4}$ sehr viel keiner ist.
146 Damit ist es sehr wahrscheinlich, dass vor einem erneuten Treffer ein Volumen per Diffusionsprozess mit den Nachbarn Kohlenstoff austauscht.
147 Die Diffusion als essentieller Mechanismus f"ur den Selbstorganisationsprozess findet somit statt.
149 Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 \, nm$ mit zunehmenden $d_r$.
150 Au"serdem kann man eine kleine Zunahme der Periodenl"ange der Lamellen mit zunehmendem $d_v$ erahnen.
151 Dies erkennt man am besten beim Vergleich der zwei Extrema $d_v=10$ und $d_v=10000$.
152 Dies liegt wiederum an der schnelleren Diffusion, die eine aggressivere Anh"aufung von Kohlenstoff selbst in Tiefen geringerer Kohlenstoffkonzentration bewirkt.
154 In Abbildung \ref{img:dv_ls} sind die Linescans der fouriertransformierten Cross-Sections a) und d) aus Abbildung \ref{img:dv_influence} zu sehen.
155 Die Zunahme der Periodenl"ange macht sich hier durch die Verschiebung des Intensit"atsmaximums zu einer geringeren Frequenz bemerkbar.
156 W"ahrend der Linescan f"ur $d_v=10000$ (blau) schon f"ur Frequenzen unter $0,1 \, nm^{-1}$ Peaks hoher Intensit"at zeigt, erkennt man diese f"ur $d_v=10$ (rot) erst bei h"oheren Frequenzen.
157 Die durch Regression bestimmten Intensit"atsmaxima liegen bei $f_z \approx 0,106 \, nm^{-1}$ (blau) und $f_z \approx 0,114 \, nm^{-1}$ (rot).
158 Diese entsprechen ungef"ahr den Wellenl"angen $9,4 \, nm$ und $8,8 \, nm$.
160 Dieses Ergebnis einer unterschiedlich groben Verteilung der Lamellen unterstreicht ebenfalls die Bedeutung einer effizienten Diffusion f"ur die Anordnung des Kohlenstoffs in wohlseparierte Lamellen.
161 Physikalisch gesehen entspricht ein gro"ses $d_v$ einer Barriere f"ur den Einbau von Kohlenstoff in eine Lamelle.
162 Entsprechend dieser Interpretation w"urde st"andig der Transport von Kohlenstoff stattfinden, aber der Einbau des Kohlenstoffs f"ande nur nach einer gewissen Zeit statt.
164 \subsection{Einfluss der Druckspannungen}
166 Im Folgenden soll der Einfluss der Druckspannungen auf den Selbstorganisationsprozess diskutiert werden.
167 \printimg{h}{width=15cm}{high_to_low_a.eps}{Simulationsergebnisse f"ur verschiedene $p_s$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$. Variierter Parameter: a) $p_s=0,001$, b) $p_s=0,002$, c) $p_s=0,003$, d) $p_s=0,004$.}{img:p_s_influence}
168 In Abbildung \ref{img:p_s_influence} sind Simulationergebnisse mit variierten Druckspannungsparametern $p_s$ zu sehen.
169 Mit Verkleinerung des Wertes f"ur die St"arke des Einflusses von Spannungen auf die Amorphisierungswahrscheinlichkeit wird auch der Tiefenbereich, in dem sich lamellare Ausscheidungen bilden, kleiner.
170 Gleichzeitig wird auch der laterale Durchmesser der amorphen Lamellen kleiner.
171 Diese Beobachtungen illustrieren den Mechanismus der spannungsunterst"utzten Amorphisierung.
172 Da kleinere $p_s$ eine kleinere Amorphisierungswahrscheinlichkeit der kristallinen Nachbarschaft zur Folge haben, entstehen weniger amorphe Gebiete.
173 Die Druckspannungen fallen quadratisch mit der Entfernung ab.
174 Ein zuf"allig amorphisiertes Gebiet, das nicht direkt an eine Ausscheidung angrenzt, wird daher viel wahrscheinlicher rekristallisieren als eins in der direkten Nachbarschaft zu einer weiteren amorphen Zelle.
175 Da f"ur kleine $p_s$ zwar einzelne amorphe Zellen gebildet werden, aber keine ganzen Lamellen entstehen, ist zu schlussfolgern, dass selbst ein neu entstandenes amorphes Gebiet direkt neben einer Ausscheidung nicht mehr durch die Druckspannungen allein stabilisiert werden kann.
176 Es wird nur amorph bleiben, wenn vor dem n"achsten Sto"s genug Kohlenstoff durch den Diffusionsprozess gewonnen wird und eine Stabilisierung aufgrund der kohlenstoffinduzierten Amorphisierungswahrscheinlichkeit ausreicht.
178 \printimg{h}{width=12cm}{ps_einfluss_ls.eps}{Linescan der fouriertransformierten Cross-Sections aus Abbildung \ref{img:p_s_influence} von Simulationen mit a) $p_s=0,002$, b) $p_s=0,003$ und c) $p_s=0,004$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$.}{img:p_s_per}
179 In Abbildung \ref{img:p_s_per} sind die Linescans der fouriertransformierten Cross-Sections mit $p_s=0,002$, $p_s=0,003$ und $p_s=0,004$ zu sehen (Abbildung \ref{img:p_s_influence} (b,c,d)).
180 Zun"achst f"allt das sch"arfere Maximum bei der Ortsfrequenz Null f"ur h"ohere Werte von $p_s$ auf.
181 Dies h"angt mit dem fouriertransformierten Tiefenbereich zusammen.
182 In Abbildung \ref{img:p_s_influence} b) existieren Lamellen nur etwa in der unteren H"alfte des Bereichs.
183 Daher hat in Abbildung \ref{img:p_s_per} a) die n"achst h"ohere Frequenz ungleich Null einen hohen Beitrag.
184 In c) und d) sind Lamellen im gesamten zu transformierenden Bereich zu erkennen, weshalb dieser Frequenzbeitrag hier nur einen geringen Beitrag ausmacht.
186 In Abbildung \ref{img:p_s_per} a) erkennt man zwei deutliche Intensit"atspeaks f"ur Frequenzen ungleich Null, die sich mit steigenedm $p_s$ bei h"oheren Frequenzen wiederfinden (Abbildung \ref{img:p_s_per} b).
187 Dieses Ergebnis erkennt man auch sehr gut an den zugeh"origen Querschnitten, in denen die Abst"ande der Lamellen abnehmen.
188 Bei fortgesetzter Erh"ohung des Spannungseinflusses auf $p_s=0,004$ gehen die zwei Intensit"atspeaks in ein Intensit"atsmaximum "uber, wie man in Abbildung \ref{img:p_s_per} c) erkennen kann.
189 Dieser "Ubergang deutet sich auch schon beim Vergleich der Linescans f"ur $p_s=0,002$ und $p_s=0,003$ an.
190 W"ahrend die Lamellenstruktur in Abbildung \ref{img:p_s_influence} b) und c) haupts"achlich zwei Abst"ande der Lamellen aufweist, gehen diese mit Erh"ohung des Spannungseinflusses $p_s$ in einen einheitlichen Abstand "uber.
191 Das gleiche Verhalten zeigte sich bei Variation von $d_r$ in Abschnitt \ref{subsection:ess_diff}.
192 Dies deutet an, dass Ma"snahmen, die einer Bildung von Lamellen entgegenwirken, zun"achst die perfekte einheitliche Struktur aufl"osen, die durch eine "Uberlagerung unterschiedlicher Strukturen abgel"ost wird, bis letzten Endes die komplette Struktur verloren geht.
194 \subsection{Verteilung des Kohlenstoffs im Target}
195 \label{subsection:c_distrib}
197 \printimg{!h}{width=12cm}{97_98_ng.eps}{Amorph/Kristalline Struktur, Kohlenstoffverteilung und Druckspannungen in zwei aufeinander folgenden Ebenen $z=97$ und $z=98$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,004$, $d_v=10$, $d_r=0,5$, $s=2 \times 10^7$.}{img:s_c_s_distrib}
198 In Abbildung \ref{img:s_c_s_distrib} ist ein Querschnitt zweier Ebenen $z$ und $z+1$ des Targets abgebildet, so dass man die laterale Ausdehnung amorpher Lamellen und ihrer Nachbarebene erkennen kann.
199 Neben der Verteilung amorpher und kristalliner Volumina sind die Kohlenstoffverteilung und das Spannungsfeld der amorphen Ausscheidungen auf die kristalline $Si$-Matrix visualisiert.
200 Man erkennt, dass die amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen nahezu komplement"ar angeordent sind.
201 Dies ist eine Folge der weiter oben erw"ahnten Kohlenstoffdiffusion.
202 Die amorphen Gebiete entziehen den anliegenden Ebenen den Kohlenstoff, womit dort die Amophisierungswahrscheinlichkeit sinkt.
203 Die Tatsache, dass sich der Kohlenstoff in den amorphen Gebieten befindet, kann man durch Vergleich mit der Kohlenstoffverteilung erkennen.
204 Auch das Gebiet hoher Druckspannungen stimmt ann"ahernd mit den amorphen Gebiet "uberein.
205 Es f"allt aber auf, dass die Ausdehnung der amorphen Gebiete etwas gr"o"ser als das Gebiet mit hoher Kohlenstoffkonzentration ist, und dass die Druckspannungen auch noch im Randgebiet der kristallinen Volumina existieren.
206 Das amorphe Randgebiet ist aufgrund der Druckspannungen trotz des niedrigen Kohlenstoffgehalts amorph.
207 In den kristallinen Gebieten der amorph/kristallinen Grenzfl"ache reicht auch das Spannungsfeld nicht mehr aus, um den amorphen Zustand zu stabilisieren.
209 \printimg{h}{width=15cm}{ac_cconc_ver1.eps}{Querschnittsansicht und Tiefenprofil des Kohlenstoffs in einem Target mit lamellaren Strukturen. Abgebildet ist der Kohlenstoff in amorphen und kristallinen Gebieten (schwarz), in kristallinen Gebieten (rot) und in amorphen Gebieten (gr"un). Desweiteren ist die skalierte Anzahl der amorphen Gebiete (blau) abgebildet. Simulationsparameter wie in \ref{img:tem_sim_comp}.}{img:c_distrib}
210 Die komplement"are Anordnung der amorph/kristallinen Gebiete in aufeinander folgenden Ebenen wird nochmals in Abbildung \ref{img:c_distrib} deutlich.
211 Abgebildet ist die Querschnittsansicht und ein zugeh"origes Kohlenstofftiefenprofil der Simulation aus Abschnitt \ref{subsection:tem_sim_cmp}.
212 Bis zu einer Tiefe von $160 \, nm$ ist fast der komplette Kohlenstoff in kristallinen Volumina, da in diesem Tiefenbereich kaum amorphe Zellen existieren.
213 Die wenigen amorphen Zellen, die in diesem Tiefenbereich existieren, haben durch den Diffusionsprozess Kohlenstoff gewonnen, der zwar keinen gro"sen Einfluss auf die Konzentration in kristallinen Gebieten, jedoch aufgrund des relativ kleinen amorphen Volumenanteils eine hohe Konzentrationen in den amorphen Gebieten zur Folge hat.
214 Der lineare Anstieg der Kohlenstoffkonzentration in den kristallinen und den gesamten Gebieten im nicht lamellaren Bereich ist eine Folge des linear gen"aherten Implantationsprofils.
215 Ein linearer Anstieg l"asst sich auch f"ur die Konzentration in den amorphen Gebieten erkennen.
216 Dies ist offensichtlich, da proportional zur Tiefe der Kohlenstoff zunimmt, der dann in amorphe Zellen diffundieren kann.
217 Da f"ur jedes amorphe Volumen bis zu sechs Nachbarn, sofern sie kristallin sind, als Kohlenstoffdonator zur Verf"ugung stehen, ist die Steigung der Konzentration im Amorphen weitaus h"oher als die im Kristallinen.
218 Weiterhin f"allt auf, dass die Fluktuation um diesen linearen Verlauf kurz vor Beginn der lamellaren Ausscheidungen zunimmt.
219 Dies l"asst sich durch die zunehmende Existenz von amorphen Ausscheidungen, die meist nur noch von einer kristallinen Ebene voneinader getrennt sind, erkl"aren.
220 Diese Ausscheidungen konkurrieren um den zur Verf"ugung stehenden Kohlenstoff aus dieser kristallinen Ebene.
221 Mit Beginn der amorphen Lamellen sinkt der Kohlenstoffgehalt in den kristallinen Gebieten, da viel amorphe Umgebung, in die der Kohlenstoff diffundiert, vorhanden ist.
222 Die Schwankungen der Kohlenstoffkonzentration in der Gesamtheit der Gebiete h"angt mit der komplement"aren Anordnung der amorphen Gebiete in aufeinander folgenden Ebenen zusammen.
223 Man erkennt, dass abwechselnd Ebenen mit gro"sen und kleinen amorphen Anteil vorliegen.
224 Die Konzentration in den amorphen Gebieten s"attigt im lamellaren Bereich.
225 Das liegt an der schnell ansteigenden Anzahl an amorphen Gebieten, wie man in Abbildung \ref{img:c_distrib} an den blauen Punkten gut erkennen kann.
226 Diese kompensiert gerade die Zunahme des Kohlenstoffs, so dass die Konzentration in amorphen Gebieten ungef"ahr konstant bleibt.
228 \subsection{Zusammenfassung}
230 Der selbstorganisierte Bildungsprozess der lamellaren Ausscheidungen wird aus den Ergebnissen der ersten Version nachvollziehbar gemacht.
231 Mit Hilfe des Modells und der verwendeten Implementierung k"onnen geordnete Lamellenstrukturen reproduziert werden.
232 Hierf"ur wichtig ist eine hohe Anzahl von Simulationsdurchl"aufen und vergleichsweise niedrige Amorphisierungswahrscheinlichkeiten.
233 Die Kohlenstoffdiffusion von amorphen in kristalline Volumina ist essentiell f"ur den Selbstorganisationsprozess.
234 Die lamellaren Strukturen reagieren sensibel auf Ver"anderungen bei der Diffusion.
235 Schlie"st man Diffusion in $z$-Richtung aus findet keine Lamellenbildung statt.
236 Der Kohlenstoff spielt demnach eine wichtige Rolle beim Amorphisierungsprozess.
237 Untersuchungen der Kohlenstoffverteilung im Target best"atigen die aus energiegefilterten TEM-Aufnahmen gewonnene Erkenntnis, dass die amorphen Gebiete hohe Kohlenstoffkonzentrationen aufweisen.
238 Daraus, und aus den verwendeten Parametern $p_b=0$ und $p_c=0,0001$ zur Reproduzierung der experimentell gefundenen Lamellenstruktur, geht klar hervor, dass die kohlenstoffinduzierte Amorphisierung gegen"uber der ballistischen Amorphisierung einen weitaus gr"o"seren Beitrag zur Amorphisierung ausmacht.
242 \section{Simulation "uber den gesamten Implantationsbereich}
243 \label{section:sim_2}
245 Im Folgenden werden die Ergebnisse behandelt, die mit der zweiten Version des Programms berechnet wurden.
246 Hier wird "uber den gesamten Implantationsbereich von $0$ bis $700 \, nm$ simuliert.
247 In diesem Bereich befindet sich auch die experimentell gefundene durchgehend amorphe $SiC_x$-Schicht.
248 Nun stellt sich die Frage, ob Simulationsparameter existieren, die sowohl die Lamellenbildung als auch die durchgehend amorphe Schicht reproduzieren.
249 Dabei soll die Ausdehnung und Lage der Schicht abh"angig von der Dosis mit dem Experiment "ubereinstimmen.
251 Da nukleare Bremskraft und Implantationsprofil in einer Tiefe von $700 \, nm$ auf Null abgefallen sind, kann der Sputtervorgang problemlos ber"ucksichtigt werden.
252 Jeder Simulationsdurchlauf entspricht tats"achlich einem implantierten Ion, da die mittlere Anzahl von St"o"sen, die ein Ion im Target aus"ubt, ausgef"uhrt wird.
253 Sto"skoordinaten werden entsprechend der nuklearen Bremskraft gew"ahlt, der Einbau des Kohlenstoffs erfolgt gem"a"s des Implantationsprofils.
254 Die Sputterroutine wird gestartet, sobald die implantierte Dosis der Dosis entspricht, die $3 \, nm$ Abtrag zur Folge hat.
256 Zun"achst wird ein Paramtersatz vorgestellt, der die oberen Bedingungen ann"ahernd erf"ullt.
257 Dieser Satz von Parametern wurde durch systematische Variation einzelner Parameter und Feststellung seiner Auswirkung auf das Simulationsergebnis entwickelt.
258 Ein Brute-Force-Ansatz, also das Berechnen aller m"oglichen Kombinationen von Simulationsparametern ist aus Gr"unden der hohen Anzahl von freien Parametern und einer vergleichsweise niedrigen Rechenleistung nicht sinnvoll.
259 Es ist deshalb nicht ausgeschlossen, dass ein anderer Satz von Parametern existiert, der die experimentell gefundenen Ergebnisse noch exakter reproduziert.
260 Nach dem Vergleich mit dem Experiment und weitergehenden Untersuchungen des optimierten Simulationergebnisses zur Kohlenstoffkonzentration und Ausdehnung und Lage der durchgehend amorphen Schicht, wird schlie"slich der Einfluss einzelner Parameter auf das Ergebnis vorgestellt.
261 Zuletzt werden Vorhersagen zur Herstellung weiter Bereiche lamellarer, selbstorganisierter Strukturen durch Mehrfachimplantationen angestellt.
263 \subsection{Dosisabh"angigkeit der Bildung amorpher Bereiche}
264 \label{subsection:reproduced_dose}
266 %\printimg{h}{height=13cm,angle=90}{dosis_entwicklung_ng1-2.eps}{Vergleich der experimentellen und simulierten Dosisentwicklung bei a) $1,0 \times 10^{17} cm^{-2}$ bzw. $s= 40 \times 10^{6}$ und b) $2,1 \times 10^{17} cm^{-2}$ bzw. $s= 80 \times 10^{6}$. Simulationsparameter: $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^{6}$.}{img:dose_devel}
267 %\printimg{h}{height=13cm,angle=90}{dosis_entwicklung_ng2-2.eps}{Vergleich der experimentellen und simulierten Dosisentwicklung bei a) $3,3 \times 10^{17} cm^{-2}$ bzw. $s= 120 \times 10^{6}$ und b) $4,3 \times 10^{17} cm^{-2}$ bzw. $s \approx 158 \times 10^{6}$. Simulationsparameter: $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^{6}$.}{img:dose_devel2}
268 \begin{sidewaysfigure}\centering
269 \includegraphics[height=13cm]{dosis_entwicklung_ng1-2.eps}
270 \caption{Vergleich der experimentellen und simulierten Dosisentwicklung bei a) $1,0 \times 10^{17} cm^{-2}$ bzw. $s= 40 \times 10^{6}$ und b) $2,1 \times 10^{17} cm^{-2}$ bzw. $s= 80 \times 10^{6}$. Simulationsparameter: $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^{6}$.}
271 \label{img:dose_devel}
273 \begin{sidewaysfigure}\centering
274 \includegraphics[height=13cm]{dosis_entwicklung_ng2-2.eps}
275 \caption{Vergleich der experimentellen und simulierten Dosisentwicklung bei a) $3,3 \times 10^{17} cm^{-2}$ bzw. $s= 120 \times 10^{6}$ und b) $4,3 \times 10^{17} cm^{-2}$ bzw. $s \approx 158 \times 10^{6}$. Simulationsparameter: $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^{6}$.}
276 \label{img:dose_devel2}
278 Die Abbildungen \ref{img:dose_devel} und \ref{img:dose_devel2} zeigen den Vergleich der experimentell bestimmten und der simulierten Dosisabh"angigkeit der Verteilung amorpher Gebiete.
279 Man erkennt eine gute "Ubereinstimmung zwischen Experiment und Simulation.
281 In der in Abbildung \ref{img:dose_devel} a) dargestellten XTEM-Aufnahme erscheint der Bereich h"ochster Gittersch"adigung dunkel.
282 Die dunklen Kontraste sind nach \cite{maik_da} auf Verspannungen von Defekten zur"uckzuf"uhren.
283 Zus"atzlich hierzu zeigen detaillierte TEM-Untersuchungen \cite{maik_da}, dass hier etwa $3 \, nm$ gro"se amorphe Einschl"usse auftreten, die teilweise zusammenwachsen.
284 In den TEM-Aufnahmen f"ur h"ohere Dosen wurden die Proben so im Mikroskop orientiert, dass die kristallinen Bereiche in Bragg-Orientierung stehen und aufgrund des Beugungskontrastes im wesentlichen dunkel erscheinen, amorphe Schichten dagegen sehr hell.
285 F"ur diese Dosen sind die XTEM-Aufnahmen direkt mit den Simulationsergebnissen visuell vergleichbar.
287 Nach einer Dosis von $1,0 \times 10^{17} cm^{-2}$ hat sich noch keine durchgehend amorphe Schicht gebildet.
288 Bis auf eine geringe Differenz in der Tiefenposition des Bandes amorpher Ausscheidungen wird das experimentelle Ergebnis von der Simulation sehr gut reproduziert.
289 Die etwas gr"o"sere Ausdehnung der amorphen Gebiete in der Simulation liegt in diesem Fall am Unterschied der implantierten Dosis ($1,0 \times 10^{17} cm^{-2}$) und der "aquivalenten simulierten Dosis ($\approx 1,1 \times 10^{17} cm^{-2}$).
290 Die Tatsache, dass sich bei dieser geringen Dosis weder im Experiment noch in der Simulation eine durchgehend amorphe Schicht gebildet hat, spricht daf"ur, dass die vorliegenden Amorphisierungsmechanismen nicht f"ur die Bildung einer durchgehenden Schicht ausreichen.
291 Die meisten amorphen Einschl"usse haben sich nahe dem Maximum des Kohlenstoffprofils bei $500 \, nm$ und nicht nahe dem Maximum der nuklearen Bremskraft bei $400 \, nm$ gebildet.
292 Dies spricht daf"ur, dass die kohlenstoffinduzierte Amorphisierung eine wichtige Rolle im Amorphisierungsprozess "ubernimmt.
294 Bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} b)) hat sich sowohl in Simulation als auch im Experiment eine durchgehend amorphe $SiC_x$-Schicht gebildet.
295 Allerdings ist die durchgehend amorphe Schicht im Experiment viel d"unner und liegt in erster N"aherung in der oberen H"alfte des Tiefenbereichs, in dem die Simulation eine geschlossene amorphe Schicht ergibt.
296 In der unteren H"alfte dieses Bereichs zeigt die XTEM-Aufnahme wieder besonders dunkle Kontraste, so dass hier wohl eine besonders hohe Dichte von Kristalldefekten und m"oglicherweise wieder einzelne amorphe Ausscheidungen vorliegen, aber keine durchgehend amorphe Schicht.
297 Beide Bereiche zusammen sind etwa so dick wie die simulierte amorphe Schicht.
298 Die Tiefenpositionen unterscheiden sich um $30 \, nm$.
299 Vor allem an der vorderen Grenzfl"ache der amorphen Schicht zeigt die Simulation in "Ubereinstimmung mit dem Experiment individuelle amorphe Volumina ohne Lamellencharakter.
301 Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel2} a)) ist die Schichtdicke im Experiment auf $180 \, nm$ angewachsen.
302 Dasselbe gilt f"ur die Simulation.
303 Wieder f"allt die Differenz in der Tiefenposition von ungef"ahr $40 \, nm$ zwischen Simulation und Experiment auf.
304 Au"serdem erkennt man die Bildung lamellarer Ausscheidungen an der vorderen Grenzfl"ache.
305 Diese lamellaren Strukturen erkennt man ebenfalls im Experiment.
307 In Abbildung \ref{img:dose_devel2} b) ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 \, nm$ angewachsen.
308 Die lamellare Struktur wird deutlicher und der Tiefenbereich, in dem sie vorkommt, gr"o"ser.
309 Au"serdem werden die amorph/kristallinen Grenzfl"achen sch"arfer.
310 Dieses Ergebnis stimmt sehr gut mit der Simulation "uberein.
311 Zum einen w"achst die Schichtdicke im gleichem Ma"se an.
312 Weiterhin werden die lamellaren Strukturen besser erkennbar und ihre Ausdehnung in $z$-Richtung steigt an.
313 Vergleicht man die untere amorph/kristalline Grenzfl"ache mit dem Simulationsergebnis der vorangegangen Dosis, so erkennt man auch die Entwicklung zur sch"arferen Grenzfl"ache mit zunehmender Dosis.
315 Aufgrund der wichtigen Rolle der kohlenstoffinduzierten Amorphisierung kann die Differenz der Tiefenposition der amorphen Ausscheidungen, beziehungsweise der durchgehend amorphen Schicht, erkl"art werden.
316 Die Ursache liegt an dem um $30 \, nm$ verschobenen Maximum im Kohlenstoffprofil der verwendeten {\em SRIM 2003.26} Version zur {\em TRIM 92} Version, welche besser zu den experimentellen Ergebnissen passt.
317 Der Tiefenschift der Ausscheidungen in der Simulation entspricht ziemlich genau der Differenz der Kohlenstoffmaxima der zwei {\em TRIM} Versionen.
319 Zusammenfassend ist zu sagen, dass trotz einiger Unterschiede, was die Ausdehnung der amorphen Schicht bei der Dosis $2,1 \times 10^{17} cm^{-2}$ und den Tiefenshift f"ur alle Dosen angeht, die Simulation das Experiment recht gut beschreibt.
320 Man erh"alt die amorphen Ausscheidungen, die f"ur niedrige Dosen noch keine durchgehende Schicht bilden.
321 Bei Erh"ohung der Dosis bildet sich eine durchgehende Schicht ohne Vorhandensein von lamellaren Strukturen.
322 Diese bilden sich erst nach weiterer Erh"ohung der Dosis.
323 Gleichzeitig dehnt sich die durchgehende Schicht aus.
324 Nach Implantation der kompletten Dosis wird die amorph/kristalline Grenzfl"ache sch"arfer, die lamellaren Strukturen deutlicher und der Tiefenbreich, in dem sie auftreten, gr"o"ser.
326 \subsection{Kohlenstoffverteilung}
328 \printimg{h}{width=15cm}{carbon_sim.eps}{Kohlenstofftiefenprofile der Simulation f"ur $40 \times 10^6$, $80 \times 10^6$, $120 \times 10^6$ und $158 \times 10^6$ Durchl"aufen mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^{6}$, $d_r=0,05$.}{img:carbon_sim}
329 Im Folgenden sollen die Kohlenstofftiefenprofile betrachtet werden.
330 Abbildung \ref{img:carbon_sim} zeigt die aus den Simulationsergebnissen gewonnenen Kohlenstoffverteilungen in Abh"angigkeit von der Tiefe f"ur verschiedene Dosen.
331 Auff"allig ist die Verschiebung des Kohlenstoffmaximums mit steigender Dosis.
332 Diese ist durch das Absputtern der Oberfl"ache zu erkl"aren.
334 \printimg{!h}{width=15cm}{ac_cconc_ver2_new.eps}{a) Querschnittsaufnahme und b) Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. In a) sind helle Gebiete amorph, dunkle Gebiete kristallin. In b) ist der Kohlenstoff in kristallinen Gebieten gr"un, in amorphen Gebieten rot und der gesamte Kohlenstoff schwarz dargestellt.}{img:c_distrib_v2}
335 In Abbildung \ref{img:c_distrib_v2} ist die Querschnittsaufnahme aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origen Implantationsprofil abgebildet.
337 %Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten.
338 Die Kohlenstoffkonzentration steigt entsprechend dem Implantationsprofil an.
339 Zwischen $0$ und $250 \, nm$ entspricht die Konzentration in den amorphen Gebieten genau der Konzentration in den kristallinen Gebieten.
340 Die Tatsache, dass stabile Ausscheidungen ihrer kristallinen Umgebung Kohlenstoff entzogen h"atten und somit das Konzentrationsprofil in den amorphen und kristallinen Gebieten im Gegensatz zum Gesamtprofil ver"andert h"atten, spricht daf"ur, dass die Ausscheidungen in diesem Tiefenbereich rein ballistisch amorphisierte Gebiete sind, die sehr wahrscheinlich mit fortgef"uhrter Bestrahlung rekristallisieren, noch bevor sie sich durch Kohlenstoffdiffusion gegen"uber Rekristallisation stabilisieren k"onnen.
341 %Ab einer Tiefe von $150 \, nm$ sind amorphe Ausscheidungen zu erkennen.
342 %Der Kohlenstoffgehalt in den kristallinen Volumen sinkt.
343 %Gleichzeitigt steigt der Kohlenstoffgehalt in den amorphen Gebieten.
345 Ab einer Tiefe von $250 \, nm$ steigt die Konzentration in den amorphen Gebieten st"arker an als das Gesamtprofil, im Gegensatz zur Konzentration in den kristallinen Gebieten, die weniger stark ansteigt.
346 In diesem Tiefenbereich existieren Ausscheidungen, die nicht unmittelbar rekristallisieren und so Kohlenstoff durch den Diffusionsprozess gewinnen k"onnen, der zur weiteren Stabilisierung f"uhrt.
347 Ab einer Tiefe von $350 \, nm$ haben sich lamellare amorphe Ausscheidungen gebildet.
348 In allen drei Kohlenstofftiefenprofilen sind Schwankungen in diesem Bereich zu erkennen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb und die der kristallinen Gebiete immer unterhalb der Gesamtkonzentration liegt.
349 Die Ursache f"ur die Schwankungen in der Gesamtkonzentration ist die komplement"are Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen.
350 Es wechseln sich Ebenen mit hohem und niedrigem amorphen Anteil ab.
351 Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff.
352 Demnach ergeben sich Konzentrationsmaxima in Ebenen mit hohem amorphen Anteil und Minima f"ur Ebenen mit hohem kristallinen Anteil.
353 Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung also eine Folge der Diffusion.
354 Gleichzeitig steigt in den Ebenen mit viel amorphem Anteil die Kohlenstoffkonzentration auch in den amorphen und kristallinen Gebieten.
355 Dies deutet darauf hin, dass die amorphen Ausscheidungen in den Ebenen mit gro"sem amorphen Anteil schon l"anger stabil existieren und demnach mehr Kohlenstoff durch den Diffusionsprozess gewonnen haben als die Ausscheidungen in den anliegenden Ebenen.
356 Umgekehrt wurden Ebenen mit wenig kristallinem Anteil folglich weniger Kohlenstoff entzogen als Ebenen mit vielen kristallinen Gebieten.
357 Weiterhin erkennt man an den schwarz gestrichelten Linien in Abbildung \ref{img:c_distrib_v2} b), dass in den, der durchgehend amorphen Schicht am n"ahesten gelegenen amorphen Lamellen, eine ann"ahernd gleich hohe Konzentration an Kohlenstoff, wie an der vorderen und hinteren Grenzfl"ache zur durchgehend amorphen Schicht, vorhanden ist.
358 Diese charakteristische Konzentration von ungef"ahr $17 \, at.\%$ wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen, im Gegensatz zu einzelnen stabilen Ausscheidungen, ben"otig.
359 Die Maxima der Kohlenstoffkonzentration in den kristallinen Gebieten an der vorderen Grenzfl"ache sind in Abbildung \ref{img:c_distrib_v2} durch die blauen gestrichelten Linien markiert.
360 Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 \, at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen an der vorderen Grenzfl"ache ablesen.
362 In einer Tiefe von $400 \, nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten schlagartig auf Null ab.
363 Der gesamte Kohlenstoff befindet sich in den amorphen Gebieten.
364 Es existieren keine kristallinen Gebiete mehr.
365 Hier beginnt die durchgehend amorphe Schicht.
366 Die Konzentration in den amorphen Gebieten entspricht genau der Gesamtkonzentration.
368 Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 \, nm$ erreicht hat, f"allt sie steil ab.
369 In einer Tiefe von ungef"ahr $570 \, nm$ steigt der Kohlenstoff wieder schlagartig in den kristallinen Gebieten an.
370 Dies entspricht dem Ende der durchgehend amorphen Schicht.
371 Auff"allig ist, dass hier das Maximum der Kohlenstoffkonzentration in kristallinen Gebieten sehr viel h"oher ist, als das an der vorderen Grenzfl"ache.
372 Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 \, nm$ wieder in die Gesamtkonzentration "uber.
373 Die Ausscheidungen sind wie die Ausscheidungen bis zu einer Tiefe von $250 \, nm$ instabil gegen"uber Rekristallisation.
375 Die Tabellen \ref{table:interface_conc_exp} und \ref{table:interface_conc_sim} fassen die Kohlenstoffkonzentration an der vorderen und hinteren Grenzfl"ache der durchgehend amorphen Schicht f"ur Experiment und Simulation in Abh"angigkeit von der Dosis zusammen.
376 Experimentell wird dies durch die Kombination der Messung des Kohlenstofftiefenprofils mittels Rutherford-R"uckstreu-Spektroskopie und der Bestimmung der Tiefe der Grenzfl"achen mittels Transmissionselektronenmikroskopie realisiert.
377 In der Simulation erfolgt die Auswertung "uber die Kohlenstofftiefenprofile in amorphen und kristallinen Gebieten.
378 Die Grenzfl"achen der durchgehend amorphen Schicht befinden sich in Tiefen, in der die Konzentration im Kristallinen auf Null abgefallen beziehungsweise gerade noch Null ist.
379 Durch Ablesen der Konzentrationen im Amorphen in diesen Tiefen erh"alt man die gew"unschten Grenzfl"achenkonzentrationen.
381 Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $18 \, at.\%$.
382 Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 \, at.\%$ gut "uberein.
383 Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft, die an der hinteren Grenzfl"ache sehr viel geringer als an der vorderen ist, eine untergeordnete Rolle im Amorphisierungsprozess einnimmt, und das "Uberschreiten einer Schwellkonzentration mit dem Amorphisierungsprozess verbunden ist.
384 Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehend amorphen $SiC_x$-Schicht.
388 \begin{tabular}{|c|c|c|}
390 Dosis & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an vorderer Grenzfl"ache \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an hinterer Grenzfl"ache \end{center} \end{minipage} \\
392 $2,1 \times 10^{17} cm^{-2}$ & 16 $at. \%$ & 13 $at. \%$ \\
394 $3,3 \times 10^{17} cm^{-2}$ & 13 $at. \%$ & 14 $at. \%$ \\
396 $3,4 \times 10^{17} cm^{-2}$ & 14 $at. \%$ & 12 $at. \%$ \\
400 \caption{Experimentell bestimmte Kohlenstoffkonzentration an den Grenzfl"achen der amorphen Schicht in Abh"angigkeit der Dosis aus \cite{maik_da}.}
401 \label{table:interface_conc_exp}
405 \begin{tabular}{|c|c|c|c|}
407 Durchl"aufe & \begin{minipage}{3.5cm} \begin{center} "aquivalente Dosis \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an vorderer Grenzfl"ache \end{center} \end{minipage} & \begin{minipage}{3.5cm} \begin{center} $C$-Konzentration an hinterer Grenzfl"ache \end{center} \end{minipage} \\
409 $80 \times 10^6$ & $2,16 \times 10^{17} cm^{-2}$ & 15,21 $at. \%$ & 16,62 $at. \%$ \\
411 $120 \times 10^6$ & $3,25 \times 10^{17} cm^{-2}$ & 15,80 $at. \%$ & 17,67 $at. \%$ \\
413 $159 \times 10^6$ & $4,3 \times 10^{17} cm^{-2}$ & 17,28 $at. \%$ & 17,73 $at. \%$ \\
417 \caption{Durch die Simulation ermittelte Kohlenstoffkonzentration an den Grenzfl"achen der amorphen Schicht in Abh"angigkeit der Anzahl der Durchl"aufe.}
418 \label{table:interface_conc_sim}
421 \subsection{Position und Ausdehnung der amorphen Phase}
423 \printimg{!h}{width=8cm}{z_zplus1_ver2_new.eps}{Amorph/Kristalline Struktur in zwei aufeinander folgenden $x-y$-Schnitten in der Ebene $z=127$ und $z=128$ im Tiefenbereich der lamellaren Strukturen der Simulation mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,5$, $d_v=10^6$ und $s=158 \times 10^6$ (Abbildung \ref{img:var_sim_paramters} b)).}{img:z_zplus1_ver2}
424 Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ in einem Tiefenbereich mit lamellaren Strukturen.
425 Sie best"atigt die Vermutung der nahezu komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinander folgenden Ebene in diesem Tiefenbereich.
426 Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor.
428 \printimg{!h}{width=15cm}{position_al.eps}{Position und Ausdehnung amorpher Phasen (graue Fl"achen) und Kohlenstoffkonzentrationsmaximum (rot) in Abh"angigkeit der Dosis in der Simulation aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2}.}{img:position_sim}
429 Abbildung \ref{img:position_sim} zeigt die aus der Simulation ermittelte Position und Ausdehnung der amorphen Phasen.
430 Zus"atzlich ist der Verlauf des Kohlenstoffmaximums eingezeichnet.
431 Die amorphe Schicht erstreckt sich um das Kohlenstoffverteilungsmaximum.
432 Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:lua_vs_d} "uberein.
433 Aufgrund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 \, nm$ tiefer vorzufinden.
434 Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet.
435 Diese existieren, wenn auch nur sehr wenige, in der Simulation schon kurz unterhalb der Oberfl"ache des Targets.
436 Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt.
437 Demnach muss mindestens $23\, \%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen.
438 Um einen Vergleich mit den experimentell bestimmten Daten aus Abbildung \ref{img:temdosis} anstellen zu k"onnen, bestimmt {\em NLSOP} nach diesem Wert den Beginn der amorphen Ausscheidungen.
439 In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 \, nm$ "uber dem Beginn der durchgehend amorphen Schicht.
440 Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist.
441 Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln.
442 Daher muss gerade f"ur kleine Dosen ein gro"ser Fehler angenommen werden.
444 \subsection{Variation der Simulationsparameter}
446 Im Folgenden sollen Ergebnisse mit variierten Simulationsparametern vorgestellt und interpretiert werden.
447 Dabei wird von dem Satz der Parameter aus Abschnitt \ref{subsection:reproduced_dose} ausgegangen und einzelne Parameter variiert.
448 So werden die Einfl"usse einzelner Parameter auf das Ergebnis sichtbar.
449 Abbildung \ref{img:var_sim_paramters} a) zeigt zum Vergleich die Simulation mit dem Ausgangsparametersatz $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^6$, $d_r=0,05$ und $s \approx 159 \times 10^6$.
450 \printimg{h}{width=15cm}{var_sim_paramters.eps}{Variation der Simulationsparameter. Ausgangssituation in a): $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^6$, $s \approx 159 \times 10^6$. Variation des Parameters b) $d_r$, c) $p_b$, d) $p_c$ und e) $p_s$.}{img:var_sim_paramters}
452 In Abbildung \ref{img:var_sim_paramters} b) wurde die Diffusion durch einen gr"o"seren Wert des Parameters $d_r$ erh"oht.
453 Es bildet sich keine durchgehend amorphe Schicht.
454 Man erkennt fast nur noch amorphe Lamellen.
455 Die hohe Diffusionsrate des Kohlenstoffs bewirkt, dass selbst im Implantationsmaximum zuf"allig amorph gewordene Gebiete ihren kristallinen Nachbarebenen zu schnell den Kohlenstoff entziehen.
456 Dieser Prozess ist notwendig f"ur die Bildung der Lamellen, jedoch verhindert er in diesem Fall die Bildung einer durchgehend amorphen $SiC_x$-Schicht.
457 Die Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen kristallinen Gebieten ist daher zu klein.
458 Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehend amorphen Schicht sowie der Bildung der Lamellen.
460 Der Versuch, die Bildung der durchgehend amorphen Schicht in geringeren Tiefen zu erzeugen ist in \ref{img:var_sim_paramters} c) abgebildet.
461 Dazu wurde der Einfluss der ballistischen Amorphisierung $p_b$ erh"oht.
462 Da das nukleare Bremskraftmaximum vor dem Maximum der Kohlenstoffkonzentration liegt (Abbildungen \ref{img:trim_nel}/\ref{img:trim_impl}), sollte sich eine st"arkere Amorphisierung im oberen Fall des Implantationsprofils ergeben.
463 Dies ist auch tats"achlich feststellbar.
464 Jedoch steigt auch die Anzahl amorpher Gebiete insgesamt an.
465 Dies ist verst"andlich, da die Amorphisierungswahrscheinlichkeit unabh"angig von Lage oder Zustand steigt.
466 Die durchgehende Schicht nimmt nach oben hin auf Kosten der lamellaren Ausscheidungen zu.
467 Die allgemein h"ohere Wahrscheinlichkeit der Amorphisierung beg"unstigt eine komplette Amorphisierung im lamellaren Bereich.
468 Da gleichzeitig die Rekristallisationswahrscheinlichkeit sinkt, haben die ballistisch amorphisierten Gebiete eine h"ohere Chance, sich durch implantierten beziehungsweise diffundierten Kohlenstoff zu stabilisieren.
469 Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe, da hier das Kohlenstoffprofil sehr schnell abf"allt.
470 Das Entgegenwirken durch den erh"ohten Einfluss der ballistischen Amorphisierung ist sehr gering.
472 Im Hinblick auf die zu gro"se amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} d) der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert.
473 Hierdurch sollte sich eine insgesamt d"unnere Schicht ergeben, die im Mittel n"aher an der Oberfl"ache liegt.
474 Wie erwartet nimmt die Ausdehnung der amorphen Schicht ab.
475 Mit knapp $120 \, nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$.
476 Sie erstreckt sich weiterhin um das Kohlenstoffmaximum.
477 Lamellare Strukturen sind au"ser an den kristallinen Einschl"ussen nahe der vorderen Grenzfl"ache der durchgehenden Schicht nicht zu erkennen.
478 An diesem Ergebnis erkennt man wieder sehr gut, dass die kohlenstoffinduzierte Amorphisierung den wichtigsten Amorphisierungsmechanismus darstellt.
480 Der Einfluss der spannungsunterst"utzten Amorphisierung ist in Abbildung \ref{img:var_sim_paramters} e) zu sehen.
481 Hier wurde der Parameter $p_s$ erh"oht.
482 Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung selbst solcher Bereiche im Target, in denen nur wenig Kohlenstoff vorhanden ist.
483 Die amorphe Phase erstreckt sich wieder um das Kohlenstoffmaximum.
484 Die Konzentrationen am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 \, at. \%$.
485 Da in den Beitrag f"ur die spannungsunterst"utzte Amorphisierung auch die Kohlenstoffkonzentration eingeht, ist dies nicht weiter verwunderlich.
486 Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben in Abbildung \ref{img:var_sim_paramters} e) mit einen um den Faktor $10$ erh"ohten Parameter $p_s$ extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringem Kohlenstoffanteil sehr unwahrscheinlich ist.
487 Der Diffusionsprozess verliert somit an Bedeutung.
488 Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 \, at.\%$ Kohlenstoff enth"alt.
489 Lamellare Strukturen werden nicht gebildet.
491 Damit scheint die Parameterwahl aus Abbildung \ref{img:var_sim_paramters} a) ideal zu sein.
492 Zur Findung optimaler Simulationsparameter wurde mit einem sinvoll erscheinenden, jedoch mehr oder weniger zuf"allig gew"ahlten Satz von Parametern gestartet.
493 Durch Variation einzelner Parameter konnten deren Einfl"usse auf die Amorphisierung des Targets verstanden und entsprechende Anpassungen der Parameter vorgenommen werden.
494 Demnach ist nicht ausgeschlossen, dass ein anderer Satz von Parametern existiert, der die experimentell bestimmten Ergebnisse besser reproduziert.
495 Es k"onnte sein, dass die Wahl der Parameter aus Abbildung \ref{img:var_sim_paramters} a), nur einem lokalen Optimum in dem h"oherdimensionalen Optimierungsproblem entspricht.
496 Die experimentell bestimmten Ergebnisse werden durch die Simulation jedoch erstaunlich gut reproduziert.
497 Durch die Wahl der Parameter wird das Zusammenspiel der Amorphisierungs- und Diffusionsmechanismen nachvollziehbar und plausibel erscheinende Erkl"arungen k"onnen daraus abgeleitet werden.
498 Es wird davon ausgegangen, dass der vorliegende Satz an Parametern aus Abbildung \ref{img:var_sim_paramters} a) optimal ist.
500 \subsection{Zusammenfassung}
502 Die zweite Version der Simulation beschreibt den Tiefenbereich von $0$ bis $700 \, nm$, in dem sich unterhalb der lamellaren Ausscheidungen die durchgehend amorphe $SiC_x$-Schicht befindet.
503 Die Simulation ist in der Lage die experimentell bestimmte dosisabh"angige Bildung der amorphen Phasen zu reproduzieren.
504 Ein entsprechender Satz an Simulationsparametern wurde ermittelt.
505 Bis auf eine Verschiebung der Tiefenposition der amorphen Schicht, die durch das verwendete Implantationsprofil der {\em SRIM 2003.26} Version erkl"art werden kann, stimmen Simulation und Ergebnis des Experimentes sehr gut "uberein.
506 Im Rahmen der Messgenauigkeit werden auch "ahnliche Tiefen f"ur den Beginn der amorphen Einschl"usse in Simulation und experimentellen Befund erkannt.
507 Lamellare Strukturen entstehen und werden mit zunehmender Dosis sch"arfer.
508 In diesem Bereich erkennt man in aufeinander folgenden Ebenen, wie in Version 1 der Simulation, eine nahezu komplement"are Anordnung der amorphen und kristallinen Ausscheidungen.
509 Ursache hierf"ur ist der Diffusionsprozess.
510 Dies wird durch Untersuchungen der Kohlenstoffkonzentration im gesamten Target belegt, die speziell in diesem Bereich Schwankungen aufweist.
511 Weiterhin kann daraus eine Schwellkonzentration f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen abgelesen werden.
512 Die in dieser Version ber"ucksichtigten Sputtereffekte f"uhren zu einer Verschiebung des Kohlenstoffkonzentrationsmaximums.
513 Die Kohlenstoffkonzentrationen an der vorderen und hinteren Grenzfl"ache ($13$ bis $15 \, at.\%$) stimmen wie im Experiment bis auf $3 \, at.\%$ "uberein und liegen in der gleichen Gr"o"senordnung wie die experimentell bestimmten Grenzfl"achenkonzentrationen.
514 Dies zeigt erneut die wichtige Rolle der kohlenstoffinduzierten Amorphisierung im Amorphisierungsprozess auf.
515 Essentiell f"ur die Bildung lamellarer Strukturen ist die Diffusion, die, wenn sie zu schnell abl"auft, die Bildung einer durchgehend amorphen Schicht verhindert und nur Lamellen entstehen l"asst.
516 Zu hohe Werte f"ur den Parameter der Druckspannungen f"uhren dagegen zu einer kompletten Amorphisierung des kohlenstoffhaltigen Bereichs im Target.
520 \section{Herstellung gro"ser Bereiche lamellar geordneter Strukturen durch Mehrfachimplantation}
522 \printimg{h}{width=14cm}{impl_2mev.eps}{Durch {\em SRIM 2003.26} ermitteltes Implantationsprofil von $2 \, MeV$ $C^+$ in Silizium.}{img:impl_2mev}
523 \printimg{h}{width=14cm}{nel_2mev.eps}{Durch {\em SRIM 2003.26} ermittelte nukleare Bremskraft von $2 \, MeV$ $C^+$ in Silizium.}{img:nel_2mev}
524 Im Folgenden soll gepr"uft werden, ob ein zweiter Implantationsschritt einen geeigneten Mechanismus zur Erzeugung breiter lamellarer Bereiche darstellt.
525 Die Idee ist folgende.
526 Als Grundlage dient ein Siliziumtarget, das wie bisher mit $180 \, keV$ $C^{+}$-Ionen beschossen wird.
527 Ein Abbildung \ref{img:impl_2mev} entsprechendes Implantationsprofil stellt sich ein.
528 Allerdings soll das Target durchgehend kristallin sein.
529 Dies l"asst sich experimentell durch Erh"ohung der Targettemperatur erreichen.
530 Nach \cite{basic_phys_proc} reicht f"ur eine maximale Dosis von $4,3 \times 10^{17} cm^{-2}$ eine Temperatur von $500 \, ^{\circ} \mathrm{C}$ aus, um Amorphisierung zu verhindern.
532 Das kristalline Target wird dann mit $2 \, MeV$ $C^{+}$-Ionen bei der gewohnten Implantationstemperatur von $150 \, ^{\circ} \mathrm{C}$ bestrahlt.
533 Abbildung \ref{img:nel_2mev} zeigt das durch {\em SRIM 2003.26} ermittelte nukleare Bremskraftprofil.
534 Die nukleare Bremskraft ist in dem Tiefenbereich zwischen $0$ und $700 \, nm$ wesentlich flacher als die der $180 \, keV$-Implantation und nahezu konstant in dem bisher betrachteten Bereich um das Kohlenstoffkonzentrationsmaximum der $180 \, keV$-Implantation.
535 St"o"se im Bereich hoher Kohlenstoffkonzentration sind demnach ann"ahernd gleichverteilt bez"uglich der Tiefe.
536 Aufgrund der hohen Energie kommt kaum noch weiterer Kohlenstoff im relevanten Tiefenbereich um $500 \, nm$ herum zur Ruhe.
538 Bei geeigneter Wahl der Ausgangskonzentration ist zu erwarten, dass nicht der komplette kohlenstoffhaltige Bereich amorph wird.
539 Die durch die erste Implantation eingestellte Konzentration sollte idealerweise so hoch sein, dass bei der $2 \, MeV$-Ionenbestrahlung die kohlenstoffinduzierte Amorphisierung zusammen mit dem Spannungsbeitrag amorpher Nachbarn gerade hoch genug ist, um die Stabilit"at der amorphen Phase zu gew"ahrleisten.
540 Dies sollte zur Bildung amorpher Lamellen f"uhren.
541 Wird gen"ugend lange implantiert, tr"agt die Diffusion des Kohlenstoffs zur Stabilisierung der amorphen Ausscheidungen bei.
543 F"ur die Simulation werden dazu die Werte f"ur die Gewichtung der Amorphisierungsbeitr"age aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2} "ubernommen, da das gleiche Materialsystem beschrieben wird.
544 Au"serdem wird das $180 \, keV$-Bremskraft- und Implantationsprofil durch die Profile in Abbildung \ref{img:nel_2mev} und \ref{img:impl_2mev} ersetzt.
545 Aufgrund der h"oheren Energie verursachen die Ionen durchschnittlich weniger Kollisionen in dem betrachteten Tiefenbereich von $0$ bis $700 \, nm$.
546 Nach Auswertung der {\em SRIM}-Datei trifft ein Ion durchschnittlich ungef"ahr $20$ Zellen des Simulationsfensters.
547 Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat.
548 Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte.
549 Andererseits kann das nukleare Bremskraftprofil im Bereich, der durchs Sputtern verursachten Tiefenverschiebung von einigen $nm$, als nahezu konstant angesehen werden.
550 Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden au"serdem die Diffusionsparameter beibehalten.
551 F"ur die Erzeugung einer Ausgangskonfiguration kann das Programm {\em nlsop\_make\_cryst} (Anhang \ref{section:hilfsmittel}) in einem beliebigen gespeicherten Simulationsergebnis den Status jedes W"urfels auf kristallin ab"andern.
552 Die Kohlenstoffkonzentration wird nicht ver"andert.
553 Man muss ein Ergebnis verwenden, das mit einer Dosis die der gew"unschten Ausgangskonfiguration entspricht implantiert wurde, jedoch kaum amorphe Ausscheidungen, die durch den Diffusionsprozess das Implantationsprofil abge"andert h"atten, aufweisen.
555 \printimg{h}{width=15cm}{2nd_impl_4_3.eps}{Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis im zweiten Implantationsschrittes mit $2 \, MeV$ $C^+$-Ionen in $180 \, keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}{img:2nd_impl_4_3}
556 Abbildung \ref{img:2nd_impl_4_3} zeigt die Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis w"ahrend des zweiten Implantationsschrittes mit $2 \, MeV$ $C^+$-Ionen.
557 F"ur die Ausgangsverteilung wurde ein erster Implantationsschritt mit der Dosis $4,3 \times 10^{17} cm^{-2}$ gew"ahlt.
558 Wie Abbildung \ref{img:2nd_impl_4_3} e) zeigt, reicht schon eine Dosis von $5,4 \times 10^{14} cm{-2}$ im zweiten Implantationsschritt f"ur eine komplette Amorphisierung des kohlenstoffhaltigen Bereichs.
559 Diese Ausgangskonzentration ist also nicht geeignet f"ur die Herstellung breiter lamellarer Ausscheidungen.
560 Es ist zu viel Kohlenstoff vorhanden.
561 Der kohlenstoffhaltige Bereich amorphisiert schon vor dem ersten Diffusionsschritt, der notwendig f"ur die Selbstorganisation der lamellaren Ausscheidungen ist.
563 \printimg{h}{width=15cm}{2nd_impl_1_1.eps}{Entwicklung amorpher Ausscheidungen mit steigender Dosis des zweiten Implantationsschrittes mit $2 \, MeV$ $C^+$-Ionen in $180 \, keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:2nd_impl_1_1}
564 In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $17 \, at.\%$ liegt.
565 Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim} bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht.
566 F"ur die Erzeugung einer solchen Ausgangskonfiguration reicht es die Targettemperatur auf $200 \, ^{\circ} \mathrm{C}$ zu erh"ohen \cite{basic_phys_proc}.
567 Das Ergebnis des $MeV$-Implantationsschrittes ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt.
568 Nach $20 \times 10^{6}$ Schritten (Abbildung \ref{img:2nd_impl_1_1} a)), was einer Dosis von $0,54 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte amorphe Ausscheidungen zu erkennen.
569 Es hat sich keine durchgehende Schicht gebildet.
570 Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus, um den kompletten kohlenstoffhaltigen Bereich zu amorphisieren.
571 Lamellen sind noch nicht zu erkennen.
572 Aufgrund der spannungsunterst"utzten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert.
573 Die Diffusion f"uhrt zu einer wirksamen Umverteilung von Kohlenstoff, bevor das Target komplett amorphisiert ist.
574 Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohlenstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht.
575 Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen.
576 In den Abbildungen \ref{img:2nd_impl_1_1} b) bis e) erkennt man sehr sch"on die Entwicklung der Lamellen, die mit zunehmender Dosis immer sch"arfer werden.
577 Man kann davon ausgehen, dass bei fortgef"uhrter Implantation die lamellare Struktur noch sch"arfer wird.
578 Weiterhin f"allt auf, dass sich mit steigender Dosis die Lamellenstruktur in das Gebiet niedriger Kohlenstoffkonzentration ausdehnt.
579 Nach einer gro"sen Anzahl von Diffusionsdurchg"angen k"onnen sich auch hier lamellare Ausscheidungen selbstorganisieren.
580 Da kaum Kohlenstoff der $2 \, MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs.
582 Die Herstellung breiter Bereiche von amorphen lamellaren Auscheidungen durch einen zweiten Implantationsschritt ist laut Simulationsergebnis demnach m"oglich.
583 Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohlenstoffgehalt von ungef"ahr $10 \, at. \%$ im Implantationsmaximum hat.
585 F"ur die Herstellung noch gr"o"serer lamellarer Schichten ist eine m"oglichst breite, konstante und kastenf"ormige Verteilung des Kohlenstoffs ideal.
586 Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 \, keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 \, keV$ reduziert.
587 Dadurch kann ein ann"ahernd plateauf"ormiger Verlauf der Kohlenstoffkonzentration erzeugt werden, der bei ungef"ahr $500 \, nm$ im wesentlichen dem Abfall des $180 \, keV$-Profils entspricht.
589 \printimg{h}{width=15cm}{multiple_impl_cp.eps}{Ideale plateauf"ormige Kohlenstoffverteilung mit Abfall entsprechend des $180 \, keV$ $C^+$"=Implantationsprofils ab einer Tiefe von $500 \, nm$, erzeugt durch das Programm {\em nlsop\_create\_cbox} und experimentell realisiert durch mehrfaches Implantieren mit Ionenenergien von $10$ bis $180 \, keV$.}{img:cbox}
590 Ein solches Profil kann f"ur die Simulation mit dem Programm {\em nlsop\_create\_cbox} erzeugt werden.
591 W"ahlt man eine maximale Konzentration von $10 \, at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}.
593 \begin{sidewaysfigure}\centering
594 \includegraphics[height=13cm]{multiple_impl.eps}
595 \caption{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$"=Implantationsschrittes. Die maximale Anzahl der Durchl"aufe in f) von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}
598 \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel gro"sen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} a), b) und f).}{img:broad_ls}
599 Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung mit $2 \, MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen.
600 Nach $50 \times 10^6$ Durchl"aufen (Abbildung \ref{img:broad_l} a)), was einer Dosis von $1,36 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte Ausscheidungen in dem Bereich des Kohlenstoffplateaus entstanden.
601 Wie erwartet hat sich keine durchgehend amorphe Schicht gebildet.
602 Wie im oberen Fall reicht die kohlenstoffinduzierte Amorphisierung nicht aus, um den kohlenstoffhaltigen Bereich komplett zu amorphisieren.
603 Die Gebiete sind noch sehr instabil gegen"uber Rekristallisation.
604 Durch die Druckspannungen werden laterale Nachbarn amorpher Gebiete mit h"oherer Wahrscheinlichkeit amorphisieren.
605 Mit steigender Dosis und somit fortgef"uhrter Diffusion beginnen sich so lamellare Ausscheidungen zu stabilisieren.
606 Die Organisation und Stabilisierung der lamellaren Ausscheidungen erkennt man bereits bei der doppelten Dosis in Abbildung \ref{img:broad_l} b).
607 In den Lamellen befindliche amorphe Gebiete werden aufgrund der hohen Druckspannungen nur noch sehr unwahrscheinlich rekristallisieren.
608 Dagegen werden alleinstehende amorphe Gebiete in kristalliner Umgebung fr"uher oder sp"ater ausheilen.
609 Der Kohlenstoff diffundiert in die anliegende amorphe Nachbarschaft, so dass die Wahrscheinlichkeit der Amorphisierung in der kristallinen Ebene sinkt.
610 Daher beobachtet man mit steigender Dosis die deutlichere Abgrenzung der amorphen und kristallinen Lamellen (Abbildung \ref{img:broad_l} b) - f)).
611 Die Ausscheidungen werden sch"arfer.
613 Dies erkennt man auch in Abbildung \ref{img:broad_ls}.
614 Die Abbildung zeigt die Linescans von den fouriertransformierten $64 \times 64$ Zellen gro"sen Ausschnitten der Querschnittsaufnahmen a), b) und f) aus Abbildung \ref{img:broad_l}.
615 F"ur die erste Anzahl an Durchl"aufen ($s=50 \times 10^6$) erkennt man kein Maximum in der Intensit"at ungleich der Ortsfrequenz Null.
616 Mit steigender Ordnung des lamellaren Charakters erkennt man einen deutlichen Anstieg der Intensit"at f"ur Frequenzen im Bereich $f_z = 0,13 \, nm^{-1}$.
617 Die Intensit"aten steigen nur langsam mit der Dosis an, was man auch schon aus den Abbildungen \ref{img:broad_l} c) bis f) erahnen kann.
618 Die Sch"arfe der Ausscheidungen, die bereits in Abbildung \ref{img:broad_l} c) sehr hoch ist, "andert sich kaum noch.
619 Weiterhin ist keine Frequenzverschiebung des Maximums zu erkennen, was auf einen konstanten Abstand der Lamellen - unabh"angig von der Dosis - hinweist.
620 Auff"allig ist auch die Ausdehnung der amorphen Ausscheidungen in das Gebiet der stark abfallenden Kohlenstoffkonzentration mit steigender Dosis.
621 Das Ende des lamellaren Bereichs w"achst von $550$ auf ungef"ahr $600 \, nm$ an.
622 Aufgrund der niedrigen Kohlenstoffkonzentration in diesem Bereich ist klar, dass ein Ordnungsprozess hin zu kohlenstoffhaltigen Ausscheidungen l"angere Zeit ben"otigt.
624 Die Herstellung breiter Bereiche mit lamellarer Nanostruktur ist entsprechend des Simulationsergebnisses m"oglich.
625 Aufgrund neuer Untersuchungen \cite{wong} ist anzunehmen, dass solche Nanostrukturen Ausgangspunkt f"ur Materialien mit starker Photolumineszenz darstellen.