
R

 <Classification>

iASL Compiler User Reference

Revision 1.01

May 3, 2002

iASL Compiler User Reference
R

2 Ref No SC-<xxxx>
 <Classification>

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The <Product Name> may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copyright © 2000, 2001 Intel Corporation

*Other brands and names are the property of their respective owners.

R

 iASL Compiler User Reference

Ref No SC-<xxxx> 3
 <Classification>

Contents
1 Introduction..4

2 Compiler Overview..4
2.1 Input Files ...4
2.2 Output File Options ..4
2.3 Environments Supported..5

3 Compiler Analysis Phases ...5
3.1 General ASL Syntax Analysis ..5
3.2 General Semantic Analysis ..5
3.3 Control Method Semantic Analysis ..5
3.4 Control Method Invocation Analysis...6
3.5 Constant Folding ..6

4 Compiler Operation...6
4.1 Command Line Invocation..6
4.2 Options ...6
4.3 Integration Into MS VC++ Environment ...7

4.3.1 Integration as a Custom Tool ..7
4.3.2 Integration into a Project Build ..8

5 Compiler Generation From Source ...8
5.1 Required Tools ...8
5.2 Required Source Code...8

iASL Compiler User Reference
R

4 Ref No SC-<xxxx>
 <Classification>

1 Introduction
The iASL compiler is a translator for the ACPI Source Language (ASL). As part of the Intel ACPI
Component Architecture, the Intel ASL compiler implements translation for the ACPI Source
Language (ASL) to the ACPI Machine Language (AML).

Major features of the iASL compiler include:

• Full support for the ACPI 2.0a Specification including ASL grammar elements and operators.

• Extensive compiler syntax and semantic error checking, especially in the area of control
methods. This reduces the number of errors that are not discovered until the AML code is
actually interpreted (i.e., the compile-time error checking reduces the number of run-time
errors.)

• Multiple types of output files, including formatted listing files with intermixed source, several
types of AML files, and error messages.

• Portable code (ANSI C) and source code availability allows the compiler to be easily ported and
run on multiple execution platforms.

• Support for integration with the Microsoft Visual C++ development environment.

2 Compiler Overview
2.1 Input Files

• Existing ACPI 1.0 ASL source files are fully supported. Enhanced compiler error checking will
often uncover unknown problems in these files.

• All ACPI 2.0 ASL additions are supported. The compiler fully supports ACPI 2.0a and all
errata documents as of the time of this writing,

2.2 Output File Options
• AML binary output file

• AML code in C source code form for inclusion into a BIOS project

• AML code in x86 assembly code form for inclusion into a BIOS project

• AML Hex Table output file in either C or x86 assembly code as a table initialization statement.

• Listing file with source file line number, source statements, and intermixed generated AML
code. Include files named in the original source ASL file are expanded within the listing file

R

 iASL Compiler User Reference

Ref No SC-<xxxx> 5
 <Classification>

• Namespace output file — shows the ACPI namespace that corresponds to the input ASL file
(and all include files.)

• Debug parse trace output file — gives a trace of the parser and namespace during the compile.
Used to debug problems in the compiler, or to help add new compiler features.

2.3 Environments Supported
• Runs on multiple platforms (Currently Windows, FreeBSD, and Linux).

• Portable code – requires only ANSI C and a compiler generation package such as Bison/Flex or
Yacc/Lex.

• Error and warning messages are compatible with Microsoft Visual C++, allowing for
integration of the compiler into the development environment to simplify project building and
debug.

• Source code is distributed with the compiler binaries

3 Compiler Analysis Phases
3.1 General ASL Syntax Analysis

• Enhanced ASL syntax checking. Multiple errors and warnings are reported in one compile –
the compiler recovers to the next ASL statement upon detection of a syntax error.

• Constants larger than the target data size are flagged as errors. For example, if the target data
type is a BYTE, the compiler will reject any constants larger than 0xFF (255). The same error
checking is performed for WORD and DWORD constants.

3.2 General Semantic Analysis
• All named references to objects are checked for validity. All names (both Namepaths and 4-

character Namesegs) must refer to valid declared objects.

• All Fields created within Operation Regions and Buffers are checked for out-of-bounds offset
and length. The minimum access width specified for the field is used when performing this
check to ensure that the field can be properly accessed.

3.3 Control Method Semantic Analysis
• Method local variables are checked for initialization before use. All locals (LOCAL0 –

LOCAL7) must be initialized before use. This prevents fatal run-time errors for uninitialized
ASL arguments.

• Method arguments are checked for validity. For example, a control method defined with 1
argument can’t use ARG4. Again, this prevents fatal run-time errors for uninitialized ASL
arguments.

iASL Compiler User Reference
R

6 Ref No SC-<xxxx>
 <Classification>

• For all ACPI reserved control methods (such as _STA, _TMP, etc.), both the number of
arguments and return types (whether the method must return a value or not) are checked. This
prevents missing operand run-time errors that may not be detected until after the product is
shipped.

• Reserved names (all names that begin with an underscore are reserved) that are not currently
defined are flagged with a warning.

• Control method execution paths are analyzed to determine if all return statements are of the
same type — to ensure that either all return statements return a value, or all do not. This
includes an analysis to determine if execution can possibly fall through to the default implicit
return (which does not return a value) at the end of the method. A warning is issued if some
method control paths return a value and others do not

3.4 Control Method Invocation Analysis
• All control method invocations (method calls) are checked for the correct number of arguments

in all cases, regardless of whether the method is invoked with argument parentheses or not (e.g.
both ABCD() and ABCD). Prevents run-time errors caused by non-existent arguments.

• All control methods and invocations are checked to ensure that if a return value is expected and
used by the method caller, the target method actually returns a value.

3.5 Constant Folding
• All expressions that can be evaluated at compile-time rather than run time are executed and

reduced to the simplified value. The ASL operators that are supported in this manner are the
Type3, Type4, and Type5 operators defined in the ACPI specification.

4 Compiler Operation
The iASL compiler is a command line utility that is invoked to translate one ASL source file to a
corresponding AML binary file. The syntax of the various command line options is the same across
all platforms.

4.1 Command Line Invocation
The general command line syntax is as follows:

iasl [options] <Input Filename>

4.2 Options
The compiler options are specified using the ‘-‘ (minus) prefix. These options include:

-a Create AML in an x86 assembly source code file with the extension .ASM. This option
creates a file with a unique label on the AML code for each line of ASL code.

R

 iASL Compiler User Reference

Ref No SC-<xxxx> 7
 <Classification>

-c Create AML in a C source code file with the extension .C. This option creates a file with
a unique label on the AML code for each line of ASL code.

-e Provide less verbose errors and warnings in the format required by the MS VC++
environment. This allows the automatic mapping of errors and warnings to the line of
ASL source code that caused the message.

-f Disable the constant folding feature.

-h Additional help

-l Create a listing file with the extension .LST. This file contains intermixed ASL source
code and AML byte code so that the AML corresponding to each ASL statement can be
examined.

-n Create a namespace file with a dump of the ACPI namespace and the extension .NSP

-o Specify the filename prefix used for all output files, including the .AML file. (This
option overrides the output filename specified in the DefinitionBlock of the ASL.)

-qc Display a complete list of all ASL operators that are allowed in constant expressions that
can be evaluated at compile time. (This is a list of the Type 3, 4, and 5 operators.)

-s Create a combined source file with the extension .SRC. This file combines all include
files into a single, large source file.

-t Create a hex table file with the extension .HEX. This file contains raw AML byte data in
hex table format suitable for inclusion into a C (or optionally, ASM) file.

4.3 Integration Into MS VC++ Environment
This section contains instructions for integrating the iASL compiler into MS VC++ 6.0 development
environment.

4.3.1 Integration as a Custom Tool
This procedure adds the iASL compiler as a custom tool that can be used to compile ASL source
files. The output is sent to the VC output window.

a) Select Tools->Customize.

b) Select the "Tools" tab.

c) Scroll down to the bottom of the "Menu Contents" window. There you will see an empty
rectangle. Click in the rectangle to enter a name for this tool.

d) Type "iASL Compiler" in the box and hit enter. You can now edit the other fields for this new
custom tool.

e) Enter the following into the fields:

 Command: C:\Acpi\iasl.exe

 Arguments: -e "$(FilePath)"

iASL Compiler User Reference
R

8 Ref No SC-<xxxx>
 <Classification>

 Initial Directory: "$(FileDir)"

 Use Output Window: <Check this option>

 "Command" must be the path to wherever you copied the compiler.

 "-e" instructs the compiler to produce messages appropriate for VC.

 Quotes around FilePath and FileDir enable spaces in filenames.

f) Select "Close".

These steps will add the compiler to the tools menu as a custom tool. By enabling "Use Output
Window", you can click on error messages in the output window and the source file and source line
will be automatically displayed by VC. Also, you can use F4 to step through the messages and the
corresponding source line(s).

4.3.2 Integration into a Project Build
The compiler can be integrated into a project build by using it in the “custom build” step of the
project generation. The commands and arguments should be similar to those described above.

5 Compiler Generation From Source
Generation of the ASL compiler from source code requires these items:

5.1 Required Tools
1) The flex (or Lex) lexical analyzer generator

2) The Bison (Yacc replacement) parser generator

3) An ANSI C compiler

5.2 Required Source Code
There are three major source code components that are required to generate the compiler

1. The ASL compiler source

2. The ACPI CA Core Subsystem source. In particular, the Namespace Manager component is
used to create an internal ACPI namespace and symbol table.), and the AML Interpreter is
used to evaluate constant expressions.

3. The Common source for all ACPI components

R

 iASL Compiler User Reference

Ref No SC-<xxxx> 9
 <Classification>

The source files appear in these directories by default:
Compiler Source: Acpi/Components/AslCompiler
Common Source: Acpi/Components/Common
Subsystem Source: Acpi/Components/Subsystem

iASL Compiler User Reference
R

10 Ref No SC-<xxxx>
 <Classification>

This page intentionally left blank.

	Contents
	Introduction
	Compiler Overview
	Input Files
	Output File Options
	Environments Supported

	Compiler Analysis Phases
	General ASL Syntax Analysis
	General Semantic Analysis
	Control Method Semantic Analysis
	Control Method Invocation Analysis
	Constant Folding

	Compiler Operation
	Command Line Invocation
	Options
	Integration Into MS VC++ Environment
	Integration as a Custom Tool
	Integration into a Project Build

	Compiler Generation From Source
	Required Tools
	Required Source Code

