runtime schedule adding and injection of c atoms
[physik/posic.git] / posic.c
diff --git a/posic.c b/posic.c
index 006fd99..cd1a2e2 100644 (file)
--- a/posic.c
+++ b/posic.c
 /*
  * posic.c - precipitation process of silicon carbide in silicon
  *
- * author: Frank Zirkelbach <hackbard@hackdaworld.org>
+ * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
  *
  */
+
+#include <math.h>
  
-#include "posic.h"
+#include "moldyn.h"
+#include "math/math.h"
+#include "init/init.h"
+#include "visual/visual.h"
 
-#define RAND(max) (max*(0.5-(1.0*rand()/RAND_MAX+1)));
+#include "posic.h"
 
 int main(int argc,char **argv) {
 
-       t_atom *si;
-       //t_si *c;
-       int i,j,runs,amount_si;
-       double time;
-       int fd;
-
-       double tau,tau2,m,m2;
-       double deltax,deltay,deltaz,distance;
-       double deltax2,deltay2,deltaz2,tmp;
-       double lj1,lj2,lj;
-
-       /* silicon */
-       amount_si=AMOUNT_SI;
-       printf("simulating %d silicon atoms\n",amount_si);
-       si=malloc(amount_si*sizeof(t_atom));
-       if(!si) {
-               perror("silicon malloc");
-               return -1;
-       }
-       memset(si,0,amount_si*sizeof(t_atom));
-       m=SI_M; m2=2.0*m;
-
-       /* init */
-       printf("placing silicon atoms\n");
-       for(i=0;i<amount_si;i++) {
-               si[i].x=RAND(LEN_X);
-               si[i].y=RAND(LEN_Y);
-               si[i].z=RAND(LEN_Z);
-               si[i].vx=.0;
-               si[i].vy=.0;
-               si[i].vz=.0;
-               si[i].fx=.0;
-               si[i].fy=.0;
-               si[i].fz=.0;
-       }
-
-       /* time */
-       time=.0;
-       tau=TAU;
-       tau2=tau*tau;
-
-       /* rasmol */
-       printf("opening the rasmol file\n");
-       fd=open("rasmol.xyz",O_WRONLY);
-       if(fd<0) {
-               perror("rasmol file open");
-               return -1;
-       }
-
-       printf("starting velocity verlet: ");
-       fflush(stdout);
-
-       for(runs=0;runs<RUNS;runs++) {
-
-       /* 
-        * velocity verlet
+       t_moldyn md;
+
+       t_lj_params lj;
+       t_ho_params ho;
+       t_tersoff_mult_params tp;
+
+       int a,b,c;
+       double e;
+       double help;
+       t_3dvec p;
+
+       /*
+        *  moldyn init
         *
-        * r(t+h) = r(t) + h * dr/dt|t + h^2/2m * F(t)
-        * dr/dt|(t+h) = dr/dt|t + h/2m * (F(t) + F(t+h))
+        * - parsing argv
+        * - log init
+        * - random init
         *
         */
-       for(i=0;i<amount_si;i++) {
-               /* calculation of new positions r(t+h) */
-               si[i].x+=si[i].vx*tau;
-               si[i].y+=si[i].vy*tau;
-               si[i].z+=si[i].vz*tau;
-               si[i].x+=(tau2*si[i].fx/m2);
-               if(si[i].x>LX) si[i].x-=LEN_X;
-               else if(si[i].x<-LX) si[i].x+=LEN_X;
-               si[i].y+=(tau2*si[i].fy/m2);
-               if(si[i].y>LY) si[i].y-=LEN_Y;
-               else if(si[i].y<-LY) si[i].y+=LEN_Y;
-               si[i].z+=(tau2*si[i].fz/m2);
-               if(si[i].z>LZ) si[i].z-=LEN_Z;
-               else if(si[i].z<-LZ) si[i].z+=LEN_Z;
-               /* calculation of velocities v(t+h/2) */
-               si[i].vx+=(tau*si[i].fx/m2);
-               si[i].vy+=(tau*si[i].fy/m2);
-               si[i].vz+=(tau*si[i].fz/m2);
-       }
-       for(i=0;i<amount_si;i++) {
-               /* calculation of forces at new positions r(t+h) */
-               for(j=0;j<i;j++) {
-                       deltax=si[i].x-si[j].x;
-                       if(deltax>LX) deltax-=LEN_X;
-                       else if(-deltax>LX) deltax+=LEN_X;
-                       deltax2=deltax*deltax;
-                       deltay=si[i].y-si[j].y;
-                       if(deltay>LY) deltay-=LEN_Y;
-                       else if(-deltay>LY) deltay+=LEN_Y;
-                       deltay2=deltay*deltay;
-                       deltaz=si[i].z-si[j].z;
-                       if(deltaz>LZ) deltaz-=LEN_Z;
-                       else if(-deltaz>LZ) deltaz+=LEN_Z;
-                       deltaz2=deltaz*deltaz;
-                       distance=deltax2+deltay2+deltaz2;
-                       if(distance<=R2_CUTOFF) {
-                               tmp=1.0/distance; // 1/r^2
-                               lj1=tmp; // 1/r^2
-                               tmp*=tmp; // 1/r^4
-                               lj1*=tmp; // 1/r^6
-                               tmp*=tmp; // 1/r^8
-                               lj2=tmp; // 1/r^8
-                               lj1*=tmp; // 1/r^14
-                               lj1*=LJ_SIGMA_12;
-                               lj2*=LJ_SIGMA_06;
-                               lj=-2*lj1+lj2;
-                               si[i].fx=lj*deltax;
-                               si[i].fy=lj*deltay;
-                               si[i].fz=lj*deltaz;
-                               si[i].fx=-lj*deltax;
-                               si[i].fy=-lj*deltay;
-                               si[i].fz=-lj*deltaz;
-                       }
-               }
-               /* calculation of new velocities v(t+h) */
-               si[i].vx+=(tau*si[i].fx/m2);
-               si[i].vy+=(tau*si[i].fy/m2);
-               si[i].vz+=(tau*si[i].fz/m2);
-       }
-
-       time+=tau;
-
-       /* print out positions in rasmol format */
-       dprintf(fd,"%d\nTime %f\n",amount_si,time);
-       for(i=0;i<amount_si;i++)
-               dprintf(fd,"Si %f %f %f %f\n",
-                       si[i].x,si[i].y,si[i].z,time);
-       printf(".");
-       fflush(stdout);
-       dprintf(fd,"\n");
-
-       }
-
-       printf("done\n");
-       close(fd);
-       free(si);
+       a=moldyn_init(&md,argc,argv);
+       if(a<0) return a;
+
+       /*
+        * the following overrides possibly set interaction methods by argv !!
+        */
+
+       /* params */
+       lj.sigma6=LJ_SIGMA_SI*LJ_SIGMA_SI;
+       help=lj.sigma6*lj.sigma6;
+       lj.sigma6*=help;
+       lj.sigma12=lj.sigma6*lj.sigma6;
+       lj.epsilon4=4.0*LJ_EPSILON_SI;
+       ho.equilibrium_distance=0.25*sqrt(3.0)*LC_SI;
+       ho.spring_constant=1;
+       /* assignement */
+       md.potential_force_function=lennard_jones;
+       //md.potential_force_function=harmonic_oscillator;
+       md.pot_params=&lj;
+       //md.pot_params=&ho;
+       /* cutoff radius */
+       md.cutoff=R_CUTOFF*LC_SI;
+
+       /*
+        * testing random numbers
+        */
+
+#ifdef DEBUG_RANDOM_NUMBER
+       for(a=0;a<1000000;a++)
+               printf("%f %f\n",rand_get_gauss(&(md.random)),
+                                rand_get_gauss(&(md.random)));
+       return 0;
+#endif
+
+       /*
+        * geometry & particles
+        */
+
+       /* simulation cell volume in lattice constants */
+       a=LEN_X;
+       b=LEN_Y;
+       c=LEN_Z;
+       md.dim.x=a*LC_SI;
+       md.dim.y=b*LC_SI;
+       md.dim.z=c*LC_SI;
+
+       /* (un)set to (not) get visualized 'bounding atoms' */
+       md.vis.dim.x=a*LC_SI;
+       md.vis.dim.y=b*LC_SI;
+       md.vis.dim.z=c*LC_SI;
+
+       /*
+        * particles
+        */
+
+       /* lattice init */
+
+#ifndef SIMPLE_TESTING
+       md.count=create_lattice(DIAMOND,SI,M_SI,LC_SI,a,b,c,&(md.atom));
+       printf("created silicon lattice (#atoms = %d)\n",md.count);
+#else
+       md.count=2;
+       md.atom=malloc(md.count*sizeof(t_atom));
+       md.atom[0].r.x=0.23*sqrt(3.0)*LC_SI/2.0;
+       md.atom[0].r.y=0;
+       md.atom[0].r.z=0;
+       md.atom[0].element=SI;
+       md.atom[0].mass=M_SI;
+       md.atom[1].r.x=-md.atom[0].r.x;
+       md.atom[1].r.y=0;
+       md.atom[1].r.z=0;
+       md.atom[1].element=SI;
+       md.atom[1].mass=M_SI;
+
+       //md.atom[2].r.x=0.5*(a-1)*LC_SI;
+       //md.atom[2].r.y=0.5*(b-1)*LC_SI;
+       //md.atom[2].r.z=0;
+       //md.atom[2].element=C;
+       //md.atom[2].mass=M_C;
+
+       //md.atom[3].r.x=0.5*(a-1)*LC_SI;
+       //md.atom[3].r.y=0;
+       //md.atom[3].r.z=0;
+       //md.atom[3].element=SI;
+       //md.atom[3].mass=M_SI;
+#endif
+
+       /* initial thermal fluctuations of particles */
+
+#ifndef SIMPLE_TESTING
+       printf("setting thermal fluctuations (T=%f K)\n",md.t);
+       thermal_init(&md);
+#else
+       for(a=0;a<md.count;a++) v3_zero(&(md.atom[0].v));
+       md.atom[2].v.x=-320;
+       md.atom[2].v.y=-320;
+#endif
+
+       /* check kinetic energy */
+       e=get_e_kin(md.atom,md.count);
+       printf("kinetic energy: %.40f [J]\n",e);
+       printf("3/2 N k T = %.40f [J] (T=%f [K])\n",
+              1.5*md.count*K_BOLTZMANN*md.t,md.t);
+
+       /* check total momentum */
+       p=get_total_p(md.atom,md.count);
+       printf("total momentum: %.30f [Ns]\n",v3_norm(&p));
+
+       /* check time step */
+       printf("estimated accurate time step: %.30f [s]\n",
+              estimate_time_step(&md,3.0,md.t));
+
+       /*
+        * let's do the actual md algorithm now
+        *
+        * integration of newtons equations
+        */
+
+       moldyn_integrate(&md);
+
+       printf("total energy (after integration): %.40f [J]\n",
+              get_total_energy(&md));
+
+       /* close */
+
+       link_cell_shutdown(&md);
 
+       moldyn_shutdown(&md);
+       
        return 0;
 }