runtime schedule adding and injection of c atoms
[physik/posic.git] / moldyn.c
index 57ae62f..433be68 100644 (file)
--- a/moldyn.c
+++ b/moldyn.c
  *
  */
 
-#include "moldyn.h"
-
+#define _GNU_SOURCE
 #include <stdio.h>
 #include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
 #include <math.h>
 
-#include "math/math.h"
-#include "init/init.h"
-#include "random/random.h"
+#include "moldyn.h"
+#include "report/report.h"
 
+int moldyn_init(t_moldyn *moldyn,int argc,char **argv) {
 
-int create_lattice(unsigned char type,int element,double mass,double lc,
-                   int a,int b,int c,t_atom **atom) {
+       printf("[moldyn] init\n");
 
-       int count;
+       memset(moldyn,0,sizeof(t_moldyn));
+
+       rand_init(&(moldyn->random),NULL,1);
+       moldyn->random.status|=RAND_STAT_VERBOSE;
+
+       return 0;
+}
+
+int moldyn_shutdown(t_moldyn *moldyn) {
+
+       printf("[moldyn] shutdown\n");
+
+       moldyn_log_shutdown(moldyn);
+       link_cell_shutdown(moldyn);
+       rand_close(&(moldyn->random));
+       free(moldyn->atom);
+
+       return 0;
+}
+
+int set_int_alg(t_moldyn *moldyn,u8 algo) {
+
+       printf("[moldyn] integration algorithm: ");
+
+       switch(algo) {
+               case MOLDYN_INTEGRATE_VERLET:
+                       moldyn->integrate=velocity_verlet;
+                       printf("velocity verlet\n");
+                       break;
+               default:
+                       printf("unknown integration algorithm: %02x\n",algo);
+                       printf("unknown\n");
+                       return -1;
+       }
+
+       return 0;
+}
+
+int set_cutoff(t_moldyn *moldyn,double cutoff) {
+
+       moldyn->cutoff=cutoff;
+
+       printf("[moldyn] cutoff [A]: %f\n",moldyn->cutoff);
+
+       return 0;
+}
+
+int set_temperature(t_moldyn *moldyn,double t_ref) {
+
+       moldyn->t_ref=t_ref;
+
+       printf("[moldyn] temperature [K]: %f\n",moldyn->t_ref);
+
+       return 0;
+}
+
+int set_pressure(t_moldyn *moldyn,double p_ref) {
+
+       moldyn->p_ref=p_ref;
+
+       printf("[moldyn] pressure [bar]: %f\n",moldyn->p_ref/BAR);
+
+       return 0;
+}
+
+int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) {
+
+       moldyn->pt_scale=(ptype|ttype);
+       moldyn->t_tc=ttc;
+       moldyn->p_tc=ptc;
+
+       printf("[moldyn] p/t scaling:\n");
+
+       printf("  p: %s",ptype?"yes":"no ");
+       if(ptype)
+               printf(" | type: %02x | factor: %f",ptype,ptc);
+       printf("\n");
+
+       printf("  t: %s",ttype?"yes":"no ");
+       if(ttype)
+               printf(" | type: %02x | factor: %f",ttype,ttc);
+       printf("\n");
+
+       return 0;
+}
+
+int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) {
+
+       moldyn->dim.x=x;
+       moldyn->dim.y=y;
+       moldyn->dim.z=z;
+
+       moldyn->volume=x*y*z;
+
+       if(visualize) {
+               moldyn->vis.dim.x=x;
+               moldyn->vis.dim.y=y;
+               moldyn->vis.dim.z=z;
+       }
+
+       moldyn->dv=0.000001*moldyn->volume;
+
+       printf("[moldyn] dimensions in A and A^3 respectively:\n");
+       printf("  x: %f\n",moldyn->dim.x);
+       printf("  y: %f\n",moldyn->dim.y);
+       printf("  z: %f\n",moldyn->dim.z);
+       printf("  volume: %f\n",moldyn->volume);
+       printf("  visualize simulation box: %s\n",visualize?"yes":"no");
+       printf("  delta volume (pressure calc): %f\n",moldyn->dv);
+
+       return 0;
+}
+
+int set_nn_dist(t_moldyn *moldyn,double dist) {
+
+       moldyn->nnd=dist;
+
+       return 0;
+}
+
+int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) {
+
+       printf("[moldyn] periodic boundary conditions:\n");
+
+       if(x)
+               moldyn->status|=MOLDYN_STAT_PBX;
+
+       if(y)
+               moldyn->status|=MOLDYN_STAT_PBY;
+
+       if(z)
+               moldyn->status|=MOLDYN_STAT_PBZ;
+
+       printf("  x: %s\n",x?"yes":"no");
+       printf("  y: %s\n",y?"yes":"no");
+       printf("  z: %s\n",z?"yes":"no");
+
+       return 0;
+}
+
+int set_potential1b(t_moldyn *moldyn,pf_func1b func) {
+
+       moldyn->func1b=func;
+
+       return 0;
+}
+
+int set_potential2b(t_moldyn *moldyn,pf_func2b func) {
+
+       moldyn->func2b=func;
+
+       return 0;
+}
+
+int set_potential3b_j1(t_moldyn *moldyn,pf_func2b func) {
+
+       moldyn->func3b_j1=func;
+
+       return 0;
+}
+
+int set_potential3b_j2(t_moldyn *moldyn,pf_func2b func) {
+
+       moldyn->func3b_j2=func;
+
+       return 0;
+}
+
+int set_potential3b_j3(t_moldyn *moldyn,pf_func2b func) {
+
+       moldyn->func3b_j3=func;
+
+       return 0;
+}
+
+int set_potential3b_k1(t_moldyn *moldyn,pf_func3b func) {
+
+       moldyn->func3b_k1=func;
+
+       return 0;
+}
+
+int set_potential3b_k2(t_moldyn *moldyn,pf_func3b func) {
+
+       moldyn->func3b_k2=func;
+
+       return 0;
+}
+
+int set_potential_params(t_moldyn *moldyn,void *params) {
+
+       moldyn->pot_params=params;
+
+       return 0;
+}
+
+int set_avg_skip(t_moldyn *moldyn,int skip) {
+
+       printf("[moldyn] skip %d steps before starting average calc\n",skip);
+       moldyn->avg_skip=skip;
+
+       return 0;
+}
+
+int moldyn_set_log_dir(t_moldyn *moldyn,char *dir) {
+
+       strncpy(moldyn->vlsdir,dir,127);
+
+       return 0;
+}
+
+int moldyn_set_report(t_moldyn *moldyn,char *author,char *title) {
+
+       strncpy(moldyn->rauthor,author,63);
+       strncpy(moldyn->rtitle,title,63);
+
+       return 0;
+}
+       
+int moldyn_set_log(t_moldyn *moldyn,u8 type,int timer) {
+
+       char filename[128];
+       int ret;
+
+       printf("[moldyn] set log: ");
+
+       switch(type) {
+               case LOG_TOTAL_ENERGY:
+                       moldyn->ewrite=timer;
+                       snprintf(filename,127,"%s/energy",moldyn->vlsdir);
+                       moldyn->efd=open(filename,
+                                        O_WRONLY|O_CREAT|O_EXCL,
+                                        S_IRUSR|S_IWUSR);
+                       if(moldyn->efd<0) {
+                               perror("[moldyn] energy log fd open");
+                               return moldyn->efd;
+                       }
+                       dprintf(moldyn->efd,"# total energy log file\n");
+                       printf("total energy (%d)\n",timer);
+                       break;
+               case LOG_TOTAL_MOMENTUM:
+                       moldyn->mwrite=timer;
+                       snprintf(filename,127,"%s/momentum",moldyn->vlsdir);
+                       moldyn->mfd=open(filename,
+                                        O_WRONLY|O_CREAT|O_EXCL,
+                                        S_IRUSR|S_IWUSR);
+                       if(moldyn->mfd<0) {
+                               perror("[moldyn] momentum log fd open");
+                               return moldyn->mfd;
+                       }
+                       dprintf(moldyn->efd,"# total momentum log file\n");
+                       printf("total momentum (%d)\n",timer);
+                       break;
+               case LOG_PRESSURE:
+                       moldyn->pwrite=timer;
+                       snprintf(filename,127,"%s/pressure",moldyn->vlsdir);
+                       moldyn->pfd=open(filename,
+                                        O_WRONLY|O_CREAT|O_EXCL,
+                                        S_IRUSR|S_IWUSR);
+                       if(moldyn->pfd<0) {
+                               perror("[moldyn] pressure log file\n");
+                               return moldyn->pfd;
+                       }
+                       dprintf(moldyn->pfd,"# pressure log file\n");
+                       printf("pressure (%d)\n",timer);
+                       break;
+               case LOG_TEMPERATURE:
+                       moldyn->twrite=timer;
+                       snprintf(filename,127,"%s/temperature",moldyn->vlsdir);
+                       moldyn->tfd=open(filename,
+                                        O_WRONLY|O_CREAT|O_EXCL,
+                                        S_IRUSR|S_IWUSR);
+                       if(moldyn->tfd<0) {
+                               perror("[moldyn] temperature log file\n");
+                               return moldyn->tfd;
+                       }
+                       dprintf(moldyn->tfd,"# temperature log file\n");
+                       printf("temperature (%d)\n",timer);
+                       break;
+               case SAVE_STEP:
+                       moldyn->swrite=timer;
+                       printf("save file (%d)\n",timer);
+                       break;
+               case VISUAL_STEP:
+                       moldyn->vwrite=timer;
+                       ret=visual_init(&(moldyn->vis),moldyn->vlsdir);
+                       if(ret<0) {
+                               printf("[moldyn] visual init failure\n");
+                               return ret;
+                       }
+                       printf("visual file (%d)\n",timer);
+                       break;
+               case CREATE_REPORT:
+                       snprintf(filename,127,"%s/report.tex",moldyn->vlsdir);
+                       moldyn->rfd=open(filename,
+                                        O_WRONLY|O_CREAT|O_EXCL,
+                                        S_IRUSR|S_IWUSR);
+                       if(moldyn->rfd<0) {
+                               perror("[moldyn] report fd open");      
+                               return moldyn->rfd;
+                       }
+                       printf("report -> ");
+                       if(moldyn->efd) {
+                               snprintf(filename,127,"%s/e_plot.scr",
+                                        moldyn->vlsdir);
+                               moldyn->epfd=open(filename,
+                                                O_WRONLY|O_CREAT|O_EXCL,
+                                                S_IRUSR|S_IWUSR);
+                               if(moldyn->epfd<0) {
+                                       perror("[moldyn] energy plot fd open");
+                                       return moldyn->epfd;
+                               }
+                               dprintf(moldyn->epfd,e_plot_script);
+                               close(moldyn->epfd);
+                               printf("energy ");
+                       }
+                       if(moldyn->pfd) {
+                               snprintf(filename,127,"%s/pressure_plot.scr",
+                                        moldyn->vlsdir);
+                               moldyn->ppfd=open(filename,
+                                                 O_WRONLY|O_CREAT|O_EXCL,
+                                                 S_IRUSR|S_IWUSR);
+                               if(moldyn->ppfd<0) {
+                                       perror("[moldyn] p plot fd open");
+                                       return moldyn->ppfd;
+                               }
+                               dprintf(moldyn->ppfd,pressure_plot_script);
+                               close(moldyn->ppfd);
+                               printf("pressure ");
+                       }
+                       if(moldyn->tfd) {
+                               snprintf(filename,127,"%s/temperature_plot.scr",
+                                        moldyn->vlsdir);
+                               moldyn->tpfd=open(filename,
+                                                 O_WRONLY|O_CREAT|O_EXCL,
+                                                 S_IRUSR|S_IWUSR);
+                               if(moldyn->tpfd<0) {
+                                       perror("[moldyn] t plot fd open");
+                                       return moldyn->tpfd;
+                               }
+                               dprintf(moldyn->tpfd,temperature_plot_script);
+                               close(moldyn->tpfd);
+                               printf("temperature ");
+                       }
+                       dprintf(moldyn->rfd,report_start,
+                               moldyn->rauthor,moldyn->rtitle);
+                       printf("\n");
+                       break;
+               default:
+                       printf("unknown log type: %02x\n",type);
+                       return -1;
+       }
+
+       return 0;
+}
+
+int moldyn_log_shutdown(t_moldyn *moldyn) {
+
+       char sc[256];
+
+       printf("[moldyn] log shutdown\n");
+       if(moldyn->efd) {
+               close(moldyn->efd);
+               if(moldyn->rfd) {
+                       dprintf(moldyn->rfd,report_energy);
+                       snprintf(sc,255,"cd %s && gnuplot e_plot.scr",
+                                moldyn->vlsdir);
+                       system(sc);
+               }
+       }
+       if(moldyn->mfd) close(moldyn->mfd);
+       if(moldyn->pfd) {
+               close(moldyn->pfd);
+               if(moldyn->rfd)
+                       dprintf(moldyn->rfd,report_pressure);
+                       snprintf(sc,255,"cd %s && gnuplot pressure_plot.scr",
+                                moldyn->vlsdir);
+                       system(sc);
+       }
+       if(moldyn->tfd) {
+               close(moldyn->tfd);
+               if(moldyn->rfd)
+                       dprintf(moldyn->rfd,report_temperature);
+                       snprintf(sc,255,"cd %s && gnuplot temperature_plot.scr",
+                                moldyn->vlsdir);
+                       system(sc);
+       }
+       if(moldyn->rfd) {
+               dprintf(moldyn->rfd,report_end);
+               close(moldyn->rfd);
+               snprintf(sc,255,"cd %s && pdflatex report >/dev/null 2>&1",
+                        moldyn->vlsdir);
+               system(sc);
+               snprintf(sc,255,"cd %s && pdflatex report >/dev/null 2>&1",
+                        moldyn->vlsdir);
+               system(sc);
+               snprintf(sc,255,"cd %s && dvipdf report >/dev/null 2>&1",
+                        moldyn->vlsdir);
+               system(sc);
+       }
+       if(&(moldyn->vis)) visual_tini(&(moldyn->vis));
+
+       return 0;
+}
+
+/*
+ * creating lattice functions
+ */
+
+int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass,
+                   u8 attr,u8 brand,int a,int b,int c,t_3dvec *origin) {
+
+       int new,count;
        int ret;
-       t_3dvec origin;
+       t_3dvec orig;
+       void *ptr;
+       t_atom *atom;
 
-       count=a*b*c;
+       new=a*b*c;
+       count=moldyn->count;
 
-       if(type==FCC) count*=4;
-       if(type==DIAMOND) count*=8;
+       /* how many atoms do we expect */
+       if(type==CUBIC) new*=1;
+       if(type==FCC) new*=4;
+       if(type==DIAMOND) new*=8;
 
-       *atom=malloc(count*sizeof(t_atom));
-       if(*atom==NULL) {
-               perror("malloc (atoms)");
+       /* allocate space for atoms */
+       ptr=realloc(moldyn->atom,(count+new)*sizeof(t_atom));
+       if(!ptr) {
+               perror("[moldyn] realloc (create lattice)");
                return -1;
        }
+       moldyn->atom=ptr;
+       atom=&(moldyn->atom[count]);
 
-       v3_zero(&origin);
+       /* no atoms on the boundaries (only reason: it looks better!) */
+       if(!origin) {
+               orig.x=0.5*lc;
+               orig.y=0.5*lc;
+               orig.z=0.5*lc;
+       }
+       else {
+               orig.x=origin->x;
+               orig.y=origin->y;
+               orig.z=origin->z;
+       }
 
        switch(type) {
+               case CUBIC:
+                       set_nn_dist(moldyn,lc);
+                       ret=cubic_init(a,b,c,lc,atom,&orig);
+                       break;
                case FCC:
-                       ret=fcc_init(a,b,c,lc,*atom,&origin);
+                       if(!origin)
+                               v3_scale(&orig,&orig,0.5);
+                       set_nn_dist(moldyn,0.5*sqrt(2.0)*lc);
+                       ret=fcc_init(a,b,c,lc,atom,&orig);
                        break;
                case DIAMOND:
-                       ret=diamond_init(a,b,c,lc,*atom,&origin);
+                       if(!origin)
+                               v3_scale(&orig,&orig,0.25);
+                       set_nn_dist(moldyn,0.25*sqrt(3.0)*lc);
+                       ret=diamond_init(a,b,c,lc,atom,&orig);
                        break;
                default:
                        printf("unknown lattice type (%02x)\n",type);
@@ -49,30 +492,184 @@ int create_lattice(unsigned char type,int element,double mass,double lc,
        }
 
        /* debug */
-       if(ret!=count) {
-               printf("ok, there is something wrong ...\n");
-               printf("calculated -> %d atoms\n",count);
-               printf("created -> %d atoms\n",ret);
+       if(ret!=new) {
+               printf("[moldyn] creating lattice failed\n");
+               printf("  amount of atoms\n");
+               printf("  - expected: %d\n",new);
+               printf("  - created: %d\n",ret);
                return -1;
        }
 
-       while(count) {
-               (*atom)[count-1].element=element;
-               (*atom)[count-1].mass=mass;
-               count-=1;
+       moldyn->count+=new;
+       printf("[moldyn] created lattice with %d atoms\n",new);
+
+       for(ret=0;ret<new;ret++) {
+               atom[ret].element=element;
+               atom[ret].mass=mass;
+               atom[ret].attr=attr;
+               atom[ret].brand=brand;
+               atom[ret].tag=count+ret;
+               check_per_bound(moldyn,&(atom[ret].r));
        }
 
+       /* update total system mass */
+       total_mass_calc(moldyn);
+
        return ret;
 }
 
-int destroy_lattice(t_atom *atom) {
+/* cubic init */
+int cubic_init(int a,int b,int c,double lc,t_atom *atom,t_3dvec *origin) {
+
+       int count;
+       t_3dvec r;
+       int i,j,k;
+       t_3dvec o;
+
+       count=0;
+       if(origin)
+               v3_copy(&o,origin);
+       else
+               v3_zero(&o);
+
+       r.x=o.x;
+       for(i=0;i<a;i++) {
+               r.y=o.y;
+               for(j=0;j<b;j++) {
+                       r.z=o.z;
+                       for(k=0;k<c;k++) {
+                               v3_copy(&(atom[count].r),&r);
+                               count+=1;
+                               r.z+=lc;
+                       }
+                       r.y+=lc;
+               }
+               r.x+=lc;
+       }
+
+       for(i=0;i<count;i++) {
+               atom[i].r.x-=(a*lc)/2.0;
+               atom[i].r.y-=(b*lc)/2.0;
+               atom[i].r.z-=(c*lc)/2.0;
+       }
+
+       return count;
+}
+
+/* fcc lattice init */
+int fcc_init(int a,int b,int c,double lc,t_atom *atom,t_3dvec *origin) {
+
+       int count;
+       int i,j,k,l;
+       t_3dvec o,r,n;
+       t_3dvec basis[3];
+
+       count=0;
+       if(origin)
+               v3_copy(&o,origin);
+       else
+               v3_zero(&o);
+
+       /* construct the basis */
+       memset(basis,0,3*sizeof(t_3dvec));
+       basis[0].x=0.5*lc;
+       basis[0].y=0.5*lc;
+       basis[1].x=0.5*lc;
+       basis[1].z=0.5*lc;
+       basis[2].y=0.5*lc;
+       basis[2].z=0.5*lc;
+
+       /* fill up the room */
+       r.x=o.x;
+       for(i=0;i<a;i++) {
+               r.y=o.y;
+               for(j=0;j<b;j++) {
+                       r.z=o.z;
+                       for(k=0;k<c;k++) {
+                               /* first atom */
+                               v3_copy(&(atom[count].r),&r);
+                               count+=1;
+                               r.z+=lc;
+                               /* the three face centered atoms */
+                               for(l=0;l<3;l++) {
+                                       v3_add(&n,&r,&basis[l]);
+                                       v3_copy(&(atom[count].r),&n);
+                                       count+=1;
+                               }
+                       }
+                       r.y+=lc;
+               }
+               r.x+=lc;
+       }
+                               
+       /* coordinate transformation */
+       for(i=0;i<count;i++) {
+               atom[i].r.x-=(a*lc)/2.0;
+               atom[i].r.y-=(b*lc)/2.0;
+               atom[i].r.z-=(c*lc)/2.0;
+       }
+
+       return count;
+}
+
+int diamond_init(int a,int b,int c,double lc,t_atom *atom,t_3dvec *origin) {
+
+       int count;
+       t_3dvec o;
+
+       count=fcc_init(a,b,c,lc,atom,origin);
+
+       o.x=0.25*lc;
+       o.y=0.25*lc;
+       o.z=0.25*lc;
+
+       if(origin) v3_add(&o,&o,origin);
+
+       count+=fcc_init(a,b,c,lc,&atom[count],&o);
+
+       return count;
+}
+
+int add_atom(t_moldyn *moldyn,int element,double mass,u8 brand,u8 attr,
+             t_3dvec *r,t_3dvec *v) {
+
+       t_atom *atom;
+       void *ptr;
+       int count;
+       
+       atom=moldyn->atom;
+       count=(moldyn->count)++;
+
+       ptr=realloc(atom,(count+1)*sizeof(t_atom));
+       if(!ptr) {
+               perror("[moldyn] realloc (add atom)");
+               return -1;
+       }
+       moldyn->atom=ptr;
+
+       atom=moldyn->atom;
+       atom[count].r=*r;
+       atom[count].v=*v;
+       atom[count].element=element;
+       atom[count].mass=mass;
+       atom[count].brand=brand;
+       atom[count].tag=count;
+       atom[count].attr=attr;
+
+       /* update total system mass */
+       total_mass_calc(moldyn);
+
+       return 0;
+}
+
+int destroy_atoms(t_moldyn *moldyn) {
 
-       if(atom) free(atom);
+       if(moldyn->atom) free(moldyn->atom);
 
        return 0;
 }
 
-int thermal_init(t_atom *atom,t_random *random,int count,double t) {
+int thermal_init(t_moldyn *moldyn,u8 equi_init) {
 
        /*
         * - gaussian distribution of velocities
@@ -83,11 +680,18 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) {
        int i;
        double v,sigma;
        t_3dvec p_total,delta;
+       t_atom *atom;
+       t_random *random;
+
+       atom=moldyn->atom;
+       random=&(moldyn->random);
+
+       printf("[moldyn] thermal init (equi init: %s)\n",equi_init?"yes":"no");
 
        /* gaussian distribution of velocities */
        v3_zero(&p_total);
-       for(i=0;i<count;i++) {
-               sigma=sqrt(2.0*K_BOLTZMANN*t/atom[i].mass);
+       for(i=0;i<moldyn->count;i++) {
+               sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass);
                /* x direction */
                v=sigma*rand_get_gauss(random);
                atom[i].v.x=v;
@@ -103,72 +707,417 @@ int thermal_init(t_atom *atom,t_random *random,int count,double t) {
        }
 
        /* zero total momentum */
-       v3_scale(&p_total,&p_total,1.0/count);
-       for(i=0;i<count;i++) {
+       v3_scale(&p_total,&p_total,1.0/moldyn->count);
+       for(i=0;i<moldyn->count;i++) {
                v3_scale(&delta,&p_total,1.0/atom[i].mass);
                v3_sub(&(atom[i].v),&(atom[i].v),&delta);
        }
 
        /* velocity scaling */
-       scale_velocity(atom,count,t);
+       scale_velocity(moldyn,equi_init);
 
        return 0;
 }
 
-int scale_velocity(t_atom *atom,int count,double t) {
+double total_mass_calc(t_moldyn *moldyn) {
 
        int i;
-       double e,c;
 
-       /*
-        * - velocity scaling (E = 3/2 N k T), E: kinetic energy
-        */
-       e=0.0;
-       for(i=0;i<count;i++)
-               e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
-       c=sqrt((2.0*e)/(3.0*count*K_BOLTZMANN*t));
-       for(i=0;i<count;i++)
-               v3_scale(&(atom[i].v),&(atom[i].v),(1.0/c));
+       moldyn->mass=0.0;
 
-       return 0;
-}
+       for(i=0;i<moldyn->count;i++)
+               moldyn->mass+=moldyn->atom[i].mass;
 
-double get_e_kin(t_atom *atom,int count) {
+       return moldyn->mass;
+}
 
-       int i;
-       double e;
+double temperature_calc(t_moldyn *moldyn) {
 
-       e=0.0;
+       /* assume up to date kinetic energy, which is 3/2 N k_B T */
 
-       for(i=0;i<count;i++) {
-               e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
-       }
+       moldyn->t=(2.0*moldyn->ekin)/(3.0*K_BOLTZMANN*moldyn->count);
 
-       return e;
+       return moldyn->t;
 }
 
-double get_e_pot(t_moldyn *moldyn) {
+double get_temperature(t_moldyn *moldyn) {
 
-       return(moldyn->potential(moldyn));
+       return moldyn->t;
 }
 
-double get_total_energy(t_moldyn *moldyn) {
+int scale_velocity(t_moldyn *moldyn,u8 equi_init) {
 
-       double e;
+       int i;
+       double e,scale;
+       t_atom *atom;
+       int count;
 
-       e=get_e_kin(moldyn->atom,moldyn->count);
-       e+=get_e_pot(moldyn);
+       atom=moldyn->atom;
 
-       return e;
-}
+       /*
+        * - velocity scaling (E = 3/2 N k T), E: kinetic energy
+        */
 
-t_3dvec get_total_p(t_atom *atom, int count) {
+       /* get kinetic energy / temperature & count involved atoms */
+       e=0.0;
+       count=0;
+       for(i=0;i<moldyn->count;i++) {
+               if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) {
+                       e+=atom[i].mass*v3_absolute_square(&(atom[i].v));
+                       count+=1;
+               }
+       }
+       e*=0.5;
+       if(count!=0) moldyn->t=e/(1.5*count*K_BOLTZMANN);
+       else return 0;  /* no atoms involved in scaling! */
+       
+       /* (temporary) hack for e,t = 0 */
+       if(e==0.0) {
+       moldyn->t=0.0;
+               if(moldyn->t_ref!=0.0) {
+                       thermal_init(moldyn,equi_init);
+                       return 0;
+               }
+               else
+                       return 0; /* no scaling needed */
+       }
+
+
+       /* get scaling factor */
+       scale=moldyn->t_ref/moldyn->t;
+       if(equi_init&TRUE)
+               scale*=2.0;
+       else
+               if(moldyn->pt_scale&T_SCALE_BERENDSEN)
+                       scale=1.0+(scale-1.0)/moldyn->t_tc;
+       scale=sqrt(scale);
+
+       /* velocity scaling */
+       for(i=0;i<moldyn->count;i++) {
+               if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB))
+                       v3_scale(&(atom[i].v),&(atom[i].v),scale);
+       }
+
+       return 0;
+}
+
+double ideal_gas_law_pressure(t_moldyn *moldyn) {
+
+       double p;
+
+       p=moldyn->count*moldyn->t*K_BOLTZMANN/moldyn->volume;
+
+       return p;
+}
+
+double virial_sum(t_moldyn *moldyn) {
+
+       int i;
+       double v;
+       t_virial *virial;
+
+       /* virial (sum over atom virials) */
+       v=0.0;
+       for(i=0;i<moldyn->count;i++) {
+               virial=&(moldyn->atom[i].virial);
+               v+=(virial->xx+virial->yy+virial->zz);
+       }
+       moldyn->virial=v;
+
+       /* global virial (absolute coordinates) */
+       virial=&(moldyn->gvir);
+       moldyn->gv=virial->xx+virial->yy+virial->zz;
+
+       return moldyn->virial;
+}
+
+double pressure_calc(t_moldyn *moldyn) {
+
+       /*
+        * PV = NkT + <W>
+        * with W = 1/3 sum_i f_i r_i (- skipped!)
+        * virial = sum_i f_i r_i
+        * 
+        * => P = (2 Ekin + virial) / (3V)
+        */
+
+       /* assume up to date virial & up to date kinetic energy */
+
+       /* pressure (atom virials) */
+       moldyn->p=2.0*moldyn->ekin+moldyn->virial;
+       moldyn->p/=(3.0*moldyn->volume);
+
+       /* pressure (absolute coordinates) */
+       moldyn->gp=2.0*moldyn->ekin+moldyn->gv;
+       moldyn->gp/=(3.0*moldyn->volume);
+
+       return moldyn->p;
+}
+
+int average_and_fluctuation_calc(t_moldyn *moldyn) {
+
+       if(moldyn->total_steps<moldyn->avg_skip)
+               return 0;
+
+       int denom=moldyn->total_steps+1-moldyn->avg_skip;
+
+       /* assume up to date energies, temperature, pressure etc */
+
+       /* kinetic energy */
+       moldyn->k_sum+=moldyn->ekin;
+       moldyn->k2_sum+=(moldyn->ekin*moldyn->ekin);
+       moldyn->k_avg=moldyn->k_sum/denom;
+       moldyn->k2_avg=moldyn->k2_sum/denom;
+       moldyn->dk2_avg=moldyn->k2_avg-(moldyn->k_avg*moldyn->k_avg);
+
+       /* potential energy */
+       moldyn->v_sum+=moldyn->energy;
+       moldyn->v2_sum+=(moldyn->energy*moldyn->energy);
+       moldyn->v_avg=moldyn->v_sum/denom;
+       moldyn->v2_avg=moldyn->v2_sum/denom;
+       moldyn->dv2_avg=moldyn->v2_avg-(moldyn->v_avg*moldyn->v_avg);
+
+       /* temperature */
+       moldyn->t_sum+=moldyn->t;
+       moldyn->t_avg=moldyn->t_sum/denom;
+
+       /* virial */
+       moldyn->virial_sum+=moldyn->virial;
+       moldyn->virial_avg=moldyn->virial_sum/denom;
+       moldyn->gv_sum+=moldyn->gv;
+       moldyn->gv_avg=moldyn->gv_sum/denom;
+
+       /* pressure */
+       moldyn->p_sum+=moldyn->p;
+       moldyn->p_avg=moldyn->p_sum/denom;
+       moldyn->gp_sum+=moldyn->gp;
+       moldyn->gp_avg=moldyn->gp_sum/denom;
+
+       return 0;
+}
+
+int get_heat_capacity(t_moldyn *moldyn) {
+
+       double temp2,ighc;
+
+       /* averages needed for heat capacity calc */
+       if(moldyn->total_steps<moldyn->avg_skip)
+               return 0;
+
+       /* (temperature average)^2 */
+       temp2=moldyn->t_avg*moldyn->t_avg;
+       printf("[moldyn] specific heat capacity for T=%f K [J/(kg K)]\n",
+              moldyn->t_avg);
+
+       /* ideal gas contribution */
+       ighc=3.0*moldyn->count*K_BOLTZMANN/2.0;
+       printf("  ideal gas contribution: %f\n",
+              ighc/moldyn->mass*KILOGRAM/JOULE);
+
+       /* specific heat for nvt ensemble */
+       moldyn->c_v_nvt=moldyn->dv2_avg/(K_BOLTZMANN*temp2)+ighc;
+       moldyn->c_v_nvt/=moldyn->mass;
+
+       /* specific heat for nve ensemble */
+       moldyn->c_v_nve=ighc/(1.0-(moldyn->dv2_avg/(ighc*K_BOLTZMANN*temp2)));
+       moldyn->c_v_nve/=moldyn->mass;
+
+       printf("  NVE: %f\n",moldyn->c_v_nve*KILOGRAM/JOULE);
+       printf("  NVT: %f\n",moldyn->c_v_nvt*KILOGRAM/JOULE);
+printf("  --> <dV2> sim: %f experimental: %f\n",moldyn->dv2_avg,1.5*moldyn->count*K_B2*moldyn->t_avg*moldyn->t_avg*(1.0-1.5*moldyn->count*K_BOLTZMANN/(700*moldyn->mass*JOULE/KILOGRAM)));
+
+       return 0;
+}
+
+double thermodynamic_pressure_calc(t_moldyn *moldyn) {
+
+       t_3dvec dim,*tp;
+       double u_up,u_down,dv;
+       double scale,p;
+       t_atom *store;
+
+       /*
+        * dU = - p dV
+        *
+        * => p = - dU/dV
+        *
+        */
+
+       scale=0.00001;
+       dv=8*scale*scale*scale*moldyn->volume;
+
+       store=malloc(moldyn->count*sizeof(t_atom));
+       if(store==NULL) {
+               printf("[moldyn] allocating store mem failed\n");
+               return -1;
+       }
+
+       /* save unscaled potential energy + atom/dim configuration */
+       memcpy(store,moldyn->atom,moldyn->count*sizeof(t_atom));
+       dim=moldyn->dim;
+
+       /* scale up dimension and atom positions */
+       scale_dim(moldyn,SCALE_UP,scale,TRUE,TRUE,TRUE);
+       scale_atoms(moldyn,SCALE_UP,scale,TRUE,TRUE,TRUE);
+       link_cell_shutdown(moldyn);
+       link_cell_init(moldyn,QUIET);
+       potential_force_calc(moldyn);
+       u_up=moldyn->energy;
+
+       /* restore atomic configuration + dim */
+       memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom));
+       moldyn->dim=dim;
+
+       /* scale down dimension and atom positions */
+       scale_dim(moldyn,SCALE_DOWN,scale,TRUE,TRUE,TRUE);
+       scale_atoms(moldyn,SCALE_DOWN,scale,TRUE,TRUE,TRUE);
+       link_cell_shutdown(moldyn);
+       link_cell_init(moldyn,QUIET);
+       potential_force_calc(moldyn);
+       u_down=moldyn->energy;
+       
+       /* calculate pressure */
+       p=-(u_up-u_down)/dv;
+printf("-------> %.10f %.10f %f\n",u_up/EV/moldyn->count,u_down/EV/moldyn->count,p/BAR);
+
+       /* restore atomic configuration + dim */
+       memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom));
+       moldyn->dim=dim;
+
+       /* restore energy */
+       potential_force_calc(moldyn);
+
+       link_cell_shutdown(moldyn);
+       link_cell_init(moldyn,QUIET);
+
+       return p;
+}
+
+double get_pressure(t_moldyn *moldyn) {
+
+       return moldyn->p;
+
+}
+
+int scale_dim(t_moldyn *moldyn,u8 dir,double scale,u8 x,u8 y,u8 z) {
+
+       t_3dvec *dim;
+
+       dim=&(moldyn->dim);
+
+       if(dir==SCALE_UP)
+               scale=1.0+scale;
+
+       if(dir==SCALE_DOWN)
+               scale=1.0-scale;
+
+       if(x) dim->x*=scale;
+       if(y) dim->y*=scale;
+       if(z) dim->z*=scale;
+
+       return 0;
+}
+
+int scale_atoms(t_moldyn *moldyn,u8 dir,double scale,u8 x,u8 y,u8 z) {
+
+       int i;
+       t_3dvec *r;
+
+       if(dir==SCALE_UP)
+               scale=1.0+scale;
+
+       if(dir==SCALE_DOWN)
+               scale=1.0-scale;
+
+       for(i=0;i<moldyn->count;i++) {
+               r=&(moldyn->atom[i].r);
+               if(x) r->x*=scale;
+               if(y) r->y*=scale;
+               if(z) r->z*=scale;
+       }
+
+       return 0;
+}
+
+int scale_volume(t_moldyn *moldyn) {
+
+       t_3dvec *dim,*vdim;
+       double scale;
+       t_linkcell *lc;
+
+       vdim=&(moldyn->vis.dim);
+       dim=&(moldyn->dim);
+       lc=&(moldyn->lc);
+
+       /* scaling factor */
+       if(moldyn->pt_scale&P_SCALE_BERENDSEN) {
+               scale=1.0-(moldyn->p_ref-moldyn->p)/moldyn->p_tc;
+               scale=pow(scale,ONE_THIRD);
+       }
+       else {
+               scale=pow(moldyn->p/moldyn->p_ref,ONE_THIRD);
+       }
+moldyn->debug=scale;
+
+       /* scale the atoms and dimensions */
+       scale_atoms(moldyn,SCALE_DIRECT,scale,TRUE,TRUE,TRUE);
+       scale_dim(moldyn,SCALE_DIRECT,scale,TRUE,TRUE,TRUE);
+
+       /* visualize dimensions */
+       if(vdim->x!=0) {
+               vdim->x=dim->x;
+               vdim->y=dim->y;
+               vdim->z=dim->z;
+       }
+
+       /* recalculate scaled volume */
+       moldyn->volume=dim->x*dim->y*dim->z;
+
+       /* adjust/reinit linkcell */
+       if(((int)(dim->x/moldyn->cutoff)!=lc->nx)||
+          ((int)(dim->y/moldyn->cutoff)!=lc->ny)||
+          ((int)(dim->z/moldyn->cutoff)!=lc->nx)) {
+               link_cell_shutdown(moldyn);
+               link_cell_init(moldyn,QUIET);
+       } else {
+               lc->x*=scale;
+               lc->y*=scale;
+               lc->z*=scale;
+       }
+
+       return 0;
+
+}
+
+double e_kin_calc(t_moldyn *moldyn) {
+
+       int i;
+       t_atom *atom;
+
+       atom=moldyn->atom;
+       moldyn->ekin=0.0;
+
+       for(i=0;i<moldyn->count;i++)
+               moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
+
+       return moldyn->ekin;
+}
+
+double get_total_energy(t_moldyn *moldyn) {
+
+       return(moldyn->ekin+moldyn->energy);
+}
+
+t_3dvec get_total_p(t_moldyn *moldyn) {
 
        t_3dvec p,p_total;
        int i;
+       t_atom *atom;
+
+       atom=moldyn->atom;
 
        v3_zero(&p_total);
-       for(i=0;i<count;i++) {
+       for(i=0;i<moldyn->count;i++) {
                v3_scale(&p,&(atom[i].v),atom[i].mass);
                v3_add(&p_total,&p_total,&p);
        }
@@ -176,89 +1125,815 @@ t_3dvec get_total_p(t_atom *atom, int count) {
        return p_total;
 }
 
+double estimate_time_step(t_moldyn *moldyn,double nn_dist) {
+
+       double tau;
+
+       /* nn_dist is the nearest neighbour distance */
+
+       tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t);
+
+       return tau;     
+}
 
 /*
- *
- * potentials & corresponding forces
- * 
+ * numerical tricks
  */
 
-/* lennard jones potential & force for one sort of atoms */
-double potential_lennard_jones(t_moldyn *moldyn) {
+/* linked list / cell method */
+
+int link_cell_init(t_moldyn *moldyn,u8 vol) {
+
+       t_linkcell *lc;
+       int i;
+
+       lc=&(moldyn->lc);
+
+       /* partitioning the md cell */
+       lc->nx=moldyn->dim.x/moldyn->cutoff;
+       lc->x=moldyn->dim.x/lc->nx;
+       lc->ny=moldyn->dim.y/moldyn->cutoff;
+       lc->y=moldyn->dim.y/lc->ny;
+       lc->nz=moldyn->dim.z/moldyn->cutoff;
+       lc->z=moldyn->dim.z/lc->nz;
+
+       lc->cells=lc->nx*lc->ny*lc->nz;
+       lc->subcell=malloc(lc->cells*sizeof(t_list));
+
+       if(lc->cells<27)
+               printf("[moldyn] FATAL: less then 27 subcells!\n");
 
-       t_lj_params *params;
+       if(vol) {
+               printf("[moldyn] initializing linked cells (%d)\n",lc->cells);
+               printf("  x: %d x %f A\n",lc->nx,lc->x);
+               printf("  y: %d x %f A\n",lc->ny,lc->y);
+               printf("  z: %d x %f A\n",lc->nz,lc->z);
+       }
+
+       for(i=0;i<lc->cells;i++)
+               list_init_f(&(lc->subcell[i]));
+
+       link_cell_update(moldyn);
+       
+       return 0;
+}
+
+int link_cell_update(t_moldyn *moldyn) {
+
+       int count,i,j,k;
+       int nx,ny;
        t_atom *atom;
-       int i,j;
-       int count;
-       t_3dvec distance;
-       double d,help;
-       double u;
-       double eps,sig6,sig12;
+       t_linkcell *lc;
+       double x,y,z;
 
-       params=moldyn->pot_params;
        atom=moldyn->atom;
-       count=moldyn->count;
-       eps=params->epsilon;
-       sig6=params->sigma6;
-       sig12=params->sigma12;
+       lc=&(moldyn->lc);
 
-       u=0.0;
-       for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[j].r),&(atom[i].r));
-                       d=1.0/v3_absolute_square(&distance);    /* 1/r^2 */
-                       help=d*d;                               /* 1/r^4 */
-                       help*=d;                                /* 1/r^6 */
-                       d=help*help;                            /* 1/r^12 */
-                       u+=eps*(sig12*d-sig6*help);
+       nx=lc->nx;
+       ny=lc->ny;
+
+       x=moldyn->dim.x/2;
+       y=moldyn->dim.y/2;
+       z=moldyn->dim.z/2;
+
+       for(i=0;i<lc->cells;i++)
+               list_destroy_f(&(lc->subcell[i]));
+       
+       for(count=0;count<moldyn->count;count++) {
+               i=((atom[count].r.x+(moldyn->dim.x/2))/lc->x);
+               j=((atom[count].r.y+(moldyn->dim.y/2))/lc->y);
+               k=((atom[count].r.z+(moldyn->dim.z/2))/lc->z);
+               list_add_immediate_f(&(lc->subcell[i+j*nx+k*nx*ny]),
+                                    &(atom[count]));
+       }
+
+       return 0;
+}
+
+int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) {
+
+       t_linkcell *lc;
+       int a;
+       int count1,count2;
+       int ci,cj,ck;
+       int nx,ny,nz;
+       int x,y,z;
+       u8 bx,by,bz;
+
+       lc=&(moldyn->lc);
+       nx=lc->nx;
+       ny=lc->ny;
+       nz=lc->nz;
+       count1=1;
+       count2=27;
+       a=nx*ny;
+
+       cell[0]=lc->subcell[i+j*nx+k*a];
+       for(ci=-1;ci<=1;ci++) {
+               bx=0;
+               x=i+ci;
+               if((x<0)||(x>=nx)) {
+                       x=(x+nx)%nx;
+                       bx=1;
+               }
+               for(cj=-1;cj<=1;cj++) {
+                       by=0;
+                       y=j+cj;
+                       if((y<0)||(y>=ny)) {
+                               y=(y+ny)%ny;
+                               by=1;
+                       }
+                       for(ck=-1;ck<=1;ck++) {
+                               bz=0;
+                               z=k+ck;
+                               if((z<0)||(z>=nz)) {
+                                       z=(z+nz)%nz;
+                                       bz=1;
+                               }
+                               if(!(ci|cj|ck)) continue;
+                               if(bx|by|bz) {
+                                       cell[--count2]=lc->subcell[x+y*nx+z*a];
+                               }
+                               else {
+                                       cell[count1++]=lc->subcell[x+y*nx+z*a];
+                               }
+                       }
                }
        }
+
+       lc->dnlc=count1;
+
+       return count1;
+}
+
+int link_cell_shutdown(t_moldyn *moldyn) {
+
+       int i;
+       t_linkcell *lc;
+
+       lc=&(moldyn->lc);
+
+       for(i=0;i<lc->nx*lc->ny*lc->nz;i++)
+               list_destroy_f(&(moldyn->lc.subcell[i]));
+
+       free(lc->subcell);
+
+       return 0;
+}
+
+int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) {
+
+       int count;
+       void *ptr;
+       t_moldyn_schedule *schedule;
+
+       schedule=&(moldyn->schedule);
+       count=++(schedule->total_sched);
+
+       ptr=realloc(schedule->runs,count*sizeof(int));
+       if(!ptr) {
+               perror("[moldyn] realloc (runs)");
+               return -1;
+       }
+       schedule->runs=ptr;
+       schedule->runs[count-1]=runs;
+
+       ptr=realloc(schedule->tau,count*sizeof(double));
+       if(!ptr) {
+               perror("[moldyn] realloc (tau)");
+               return -1;
+       }
+       schedule->tau=ptr;
+       schedule->tau[count-1]=tau;
+
+       printf("[moldyn] schedule added:\n");
+       printf("  number: %d | runs: %d | tau: %f\n",count-1,runs,tau);
+                                      
+
+       return 0;
+}
+
+int moldyn_set_schedule_hook(t_moldyn *moldyn,set_hook hook,void *hook_params) {
+
+       moldyn->schedule.hook=hook;
+       moldyn->schedule.hook_params=hook_params;
        
-       return u;
+       return 0;
 }
 
-int force_lennard_jones(t_moldyn *moldyn) {
+/*
+ *
+ * 'integration of newtons equation' - algorithms
+ *
+ */
+
+/* start the integration */
 
-       t_lj_params *params;
-       int i,j,count;
+int moldyn_integrate(t_moldyn *moldyn) {
+
+       int i;
+       unsigned int e,m,s,v,p,t;
+       t_3dvec momentum;
+       t_moldyn_schedule *sched;
        t_atom *atom;
-       t_3dvec distance;
-       t_3dvec force;
-       double d,h1,h2;
-       double eps,sig6,sig12;
+       int fd;
+       char dir[128];
+       double ds;
+       double energy_scale;
+       //double tp;
+
+       sched=&(moldyn->schedule);
+       atom=moldyn->atom;
+
+       /* initialize linked cell method */
+       link_cell_init(moldyn,VERBOSE);
+
+       /* logging & visualization */
+       e=moldyn->ewrite;
+       m=moldyn->mwrite;
+       s=moldyn->swrite;
+       v=moldyn->vwrite;
+       p=moldyn->pwrite;
+       t=moldyn->twrite;
+
+       /* sqaure of some variables */
+       moldyn->tau_square=moldyn->tau*moldyn->tau;
+       moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff;
+
+       /* energy scaling factor */
+       energy_scale=moldyn->count*EV;
+
+       /* calculate initial forces */
+       potential_force_calc(moldyn);
+#ifdef DEBUG
+return 0;
+#endif
+
+       /* some stupid checks before we actually start calculating bullshit */
+       if(moldyn->cutoff>0.5*moldyn->dim.x)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.x\n");
+       if(moldyn->cutoff>0.5*moldyn->dim.y)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.y\n");
+       if(moldyn->cutoff>0.5*moldyn->dim.z)
+               printf("[moldyn] warning: cutoff > 0.5 x dim.z\n");
+       ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass;
+       if(ds>0.05*moldyn->nnd)
+               printf("[moldyn] warning: forces too high / tau too small!\n");
+
+       /* zero absolute time */
+       moldyn->time=0.0;
+       moldyn->total_steps=0;
+
+       /* debugging, ignore */
+       moldyn->debug=0;
+
+       /* tell the world */
+       printf("[moldyn] integration start, go get a coffee ...\n");
+
+       /* executing the schedule */
+       sched->count=0;
+       while(sched->count<sched->total_sched) {
+
+               /* setting amount of runs and finite time step size */
+               moldyn->tau=sched->tau[sched->count];
+               moldyn->tau_square=moldyn->tau*moldyn->tau;
+               moldyn->time_steps=sched->runs[sched->count];
 
-       atom=moldyn->atom;      
+       /* integration according to schedule */
+
+       for(i=0;i<moldyn->time_steps;i++) {
+
+               /* integration step */
+               moldyn->integrate(moldyn);
+
+               /* calculate kinetic energy, temperature and pressure */
+               e_kin_calc(moldyn);
+               temperature_calc(moldyn);
+               virial_sum(moldyn);
+               pressure_calc(moldyn);
+               average_and_fluctuation_calc(moldyn);
+
+               /* p/t scaling */
+               if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT))
+                       scale_velocity(moldyn,FALSE);
+               if(moldyn->pt_scale&(P_SCALE_BERENDSEN|P_SCALE_DIRECT))
+                       scale_volume(moldyn);
+
+               /* check for log & visualization */
+               if(e) {
+                       if(!(i%e))
+                               dprintf(moldyn->efd,
+                                       "%f %f %f %f\n",
+                                       moldyn->time,moldyn->ekin/energy_scale,
+                                       moldyn->energy/energy_scale,
+                                       get_total_energy(moldyn)/energy_scale);
+               }
+               if(m) {
+                       if(!(i%m)) {
+                               momentum=get_total_p(moldyn);
+                               dprintf(moldyn->mfd,
+                                       "%f %f %f %f %f\n",moldyn->time,
+                                       momentum.x,momentum.y,momentum.z,
+                                       v3_norm(&momentum));
+                       }
+               }
+               if(p) {
+                       if(!(i%p)) {
+                               dprintf(moldyn->pfd,
+                                       "%f %f %f %f %f\n",moldyn->time,
+                                        moldyn->p/BAR,moldyn->p_avg/BAR,
+                                        moldyn->gp/BAR,moldyn->gp_avg/BAR);
+                       }
+               }
+               if(t) {
+                       if(!(i%t)) {
+                               dprintf(moldyn->tfd,
+                                       "%f %f %f\n",
+                                       moldyn->time,moldyn->t,moldyn->t_avg);
+                       }
+               }
+               if(s) {
+                       if(!(i%s)) {
+                               snprintf(dir,128,"%s/s-%07.f.save",
+                                        moldyn->vlsdir,moldyn->time);
+                               fd=open(dir,O_WRONLY|O_TRUNC|O_CREAT);
+                               if(fd<0) perror("[moldyn] save fd open");
+                               else {
+                                       write(fd,moldyn,sizeof(t_moldyn));
+                                       write(fd,moldyn->atom,
+                                             moldyn->count*sizeof(t_atom));
+                               }
+                               close(fd);
+                       }       
+               }
+               if(v) {
+                       if(!(i%v)) {
+                               visual_atoms(&(moldyn->vis),moldyn->time,
+                                            moldyn->atom,moldyn->count);
+                       }
+               }
+
+               /* display progress */
+               if(!(i%10)) {
+       printf("\rsched:%d, steps:%d, T:%3.1f/%3.1f P:%4.1f/%4.1f V:%6.1f",
+              sched->count,i,
+              moldyn->t,moldyn->t_avg,
+              moldyn->p_avg/BAR,moldyn->p/BAR,
+              moldyn->volume);
+       fflush(stdout);
+               }
+
+               /* increase absolute time */
+               moldyn->time+=moldyn->tau;
+               moldyn->total_steps+=1;
+
+       }
+
+               /* check for hooks */
+               if(sched->hook) {
+                       printf("\n ## schedule hook %d/%d start ##\n",
+                              sched->count+1,sched->total_sched-1);
+                       sched->hook(moldyn,sched->hook_params);
+                       printf(" ## schedule hook end ##\n");
+               }
+
+               /* increase the schedule counter */
+               sched->count+=1;
+
+       }
+
+       return 0;
+}
+
+/* velocity verlet */
+
+int velocity_verlet(t_moldyn *moldyn) {
+
+       int i,count;
+       double tau,tau_square,h;
+       t_3dvec delta;
+       t_atom *atom;
+
+       atom=moldyn->atom;
        count=moldyn->count;
-       params=moldyn->pot_params;
-       eps=params->epsilon;
-       sig6=params->sigma6;
-       sig12=params->sigma12;
+       tau=moldyn->tau;
+       tau_square=moldyn->tau_square;
+
+       for(i=0;i<count;i++) {
+               /* new positions */
+               h=0.5/atom[i].mass;
+               v3_scale(&delta,&(atom[i].v),tau);
+               v3_add(&(atom[i].r),&(atom[i].r),&delta);
+               v3_scale(&delta,&(atom[i].f),h*tau_square);
+               v3_add(&(atom[i].r),&(atom[i].r),&delta);
+               check_per_bound(moldyn,&(atom[i].r));
+
+               /* velocities [actually v(t+tau/2)] */
+               v3_scale(&delta,&(atom[i].f),h*tau);
+               v3_add(&(atom[i].v),&(atom[i].v),&delta);
+       }
 
-       for(i=0;i<count;i++) v3_zero(&(atom[i].f));
+       /* neighbour list update */
+       link_cell_update(moldyn);
+
+       /* forces depending on chosen potential */
+       potential_force_calc(moldyn);
 
        for(i=0;i<count;i++) {
-               for(j=0;j<i;j++) {
-                       v3_sub(&distance,&(atom[j].r),&(atom[i].r));
-                       v3_per_bound(&distance,&(moldyn->dim));
-                       d=v3_absolute_square(&distance);
-                       if(d<=moldyn->cutoff_square) {
-                               h1=1.0/d;                       /* 1/r^2 */
-                               d=h1*h1;                        /* 1/r^4 */
-                               h2=d*d;                         /* 1/r^8 */
-                               h1*=d;                          /* 1/r^6 */
-                               h1*=h2;                         /* 1/r^14 */
-                               h1*=sig12;
-                               h2*=sig6;
-                               d=-12.0*h1+6.0*h2;
-                               d*=eps;
-                               v3_scale(&force,&distance,d);
-                               v3_add(&(atom[j].f),&(atom[j].f),&force);
-                               v3_sub(&(atom[i].f),&(atom[i].f),&force);
+               /* again velocities [actually v(t+tau)] */
+               v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass);
+               v3_add(&(atom[i].v),&(atom[i].v),&delta);
+       }
+
+       return 0;
+}
+
+
+/*
+ *
+ * potentials & corresponding forces & virial routine
+ * 
+ */
+
+/* generic potential and force calculation */
+
+int potential_force_calc(t_moldyn *moldyn) {
+
+       int i,j,k,count;
+       t_atom *itom,*jtom,*ktom;
+       t_virial *virial;
+       t_linkcell *lc;
+       t_list neighbour_i[27];
+       t_list neighbour_i2[27];
+       t_list *this,*that;
+       u8 bc_ij,bc_ik;
+       int dnlc;
+
+       count=moldyn->count;
+       itom=moldyn->atom;
+       lc=&(moldyn->lc);
+
+       /* reset energy */
+       moldyn->energy=0.0;
+
+       /* reset global virial */
+       memset(&(moldyn->gvir),0,sizeof(t_virial));
+
+       /* reset force, site energy and virial of every atom */
+       for(i=0;i<count;i++) {
+
+               /* reset force */
+               v3_zero(&(itom[i].f));
+
+               /* reset virial */
+               virial=(&(itom[i].virial));
+               virial->xx=0.0;
+               virial->yy=0.0;
+               virial->zz=0.0;
+               virial->xy=0.0;
+               virial->xz=0.0;
+               virial->yz=0.0;
+       
+               /* reset site energy */
+               itom[i].e=0.0;
+
+       }
+
+       /* get energy, force and virial of every atom */
+
+       /* first (and only) loop over atoms i */
+       for(i=0;i<count;i++) {
+
+               /* single particle potential/force */
+               if(itom[i].attr&ATOM_ATTR_1BP)
+                       if(moldyn->func1b)
+                               moldyn->func1b(moldyn,&(itom[i]));
+
+               if(!(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)))
+                       continue;
+
+               /* 2 body pair potential/force */
+       
+               link_cell_neighbour_index(moldyn,
+                                         (itom[i].r.x+moldyn->dim.x/2)/lc->x,
+                                         (itom[i].r.y+moldyn->dim.y/2)/lc->y,
+                                         (itom[i].r.z+moldyn->dim.z/2)/lc->z,
+                                         neighbour_i);
+
+               dnlc=lc->dnlc;
+
+               /* first loop over atoms j */
+               if(moldyn->func2b) {
+                       for(j=0;j<27;j++) {
+
+                               this=&(neighbour_i[j]);
+                               list_reset_f(this);
+
+                               if(this->start==NULL)
+                                       continue;
+
+                               bc_ij=(j<dnlc)?0:1;
+
+                               do {
+                                       jtom=this->current->data;
+
+                                       if(jtom==&(itom[i]))
+                                               continue;
+
+                                       if((jtom->attr&ATOM_ATTR_2BP)&
+                                          (itom[i].attr&ATOM_ATTR_2BP)) {
+                                               moldyn->func2b(moldyn,
+                                                              &(itom[i]),
+                                                              jtom,
+                                                              bc_ij);
+                                       }
+                               } while(list_next_f(this)!=L_NO_NEXT_ELEMENT);
+
+                       }
+               }
+
+               /* 3 body potential/force */
+
+               if(!(itom[i].attr&ATOM_ATTR_3BP))
+                       continue;
+
+               /* copy the neighbour lists */
+               memcpy(neighbour_i2,neighbour_i,27*sizeof(t_list));
+
+               /* second loop over atoms j */
+               for(j=0;j<27;j++) {
+
+                       this=&(neighbour_i[j]);
+                       list_reset_f(this);
+
+                       if(this->start==NULL)
+                               continue;
+
+                       bc_ij=(j<dnlc)?0:1;
+
+                       do {
+                               jtom=this->current->data;
+
+                               if(jtom==&(itom[i]))
+                                       continue;
+
+                               if(!(jtom->attr&ATOM_ATTR_3BP))
+                                       continue;
+
+                               /* reset 3bp run */
+                               moldyn->run3bp=1;
+
+                               if(moldyn->func3b_j1)
+                                       moldyn->func3b_j1(moldyn,
+                                                         &(itom[i]),
+                                                         jtom,
+                                                         bc_ij);
+
+                               /* in first j loop, 3bp run can be skipped */
+                               if(!(moldyn->run3bp))
+                                       continue;
+                       
+                               /* first loop over atoms k */
+                               if(moldyn->func3b_k1) {
+
+                               for(k=0;k<27;k++) {
+
+                                       that=&(neighbour_i2[k]);
+                                       list_reset_f(that);
+                                       
+                                       if(that->start==NULL)
+                                               continue;
+
+                                       bc_ik=(k<dnlc)?0:1;
+
+                                       do {
+
+                                               ktom=that->current->data;
+
+                                               if(!(ktom->attr&ATOM_ATTR_3BP))
+                                                       continue;
+
+                                               if(ktom==jtom)
+                                                       continue;
+
+                                               if(ktom==&(itom[i]))
+                                                       continue;
+
+                                               moldyn->func3b_k1(moldyn,
+                                                                 &(itom[i]),
+                                                                 jtom,
+                                                                 ktom,
+                                                                 bc_ik|bc_ij);
+
+                                       } while(list_next_f(that)!=\
+                                               L_NO_NEXT_ELEMENT);
+
+                               }
+
+                               }
+
+                               if(moldyn->func3b_j2)
+                                       moldyn->func3b_j2(moldyn,
+                                                         &(itom[i]),
+                                                         jtom,
+                                                         bc_ij);
+
+                               /* second loop over atoms k */
+                               if(moldyn->func3b_k2) {
+
+                               for(k=0;k<27;k++) {
+
+                                       that=&(neighbour_i2[k]);
+                                       list_reset_f(that);
+                                       
+                                       if(that->start==NULL)
+                                               continue;
+
+                                       bc_ik=(k<dnlc)?0:1;
+
+                                       do {
+
+                                               ktom=that->current->data;
+
+                                               if(!(ktom->attr&ATOM_ATTR_3BP))
+                                                       continue;
+
+                                               if(ktom==jtom)
+                                                       continue;
+
+                                               if(ktom==&(itom[i]))
+                                                       continue;
+
+                                               moldyn->func3b_k2(moldyn,
+                                                                 &(itom[i]),
+                                                                 jtom,
+                                                                 ktom,
+                                                                 bc_ik|bc_ij);
+
+                                       } while(list_next_f(that)!=\
+                                               L_NO_NEXT_ELEMENT);
+
+                               }
+                               
+                               }
+
+                               /* 2bp post function */
+                               if(moldyn->func3b_j3) {
+                                       moldyn->func3b_j3(moldyn,
+                                                         &(itom[i]),
+                                                         jtom,bc_ij);
+                               }
+                                       
+                       } while(list_next_f(this)!=L_NO_NEXT_ELEMENT);
+               
+               }
+               
+#ifdef DEBUG
+       //printf("\n\n");
+#endif
+#ifdef VDEBUG
+       printf("\n\n");
+#endif
+
+       }
+
+#ifdef DEBUG
+       printf("\nATOM 0: %f %f %f\n\n",itom->f.x,itom->f.y,itom->f.z);
+#endif
+
+       /* calculate global virial */
+       for(i=0;i<count;i++) {
+               moldyn->gvir.xx+=moldyn->atom[i].r.x*moldyn->atom[i].f.x;
+               moldyn->gvir.yy+=moldyn->atom[i].r.y*moldyn->atom[i].f.y;
+               moldyn->gvir.zz+=moldyn->atom[i].r.z*moldyn->atom[i].f.z;
+               moldyn->gvir.xy+=moldyn->atom[i].r.y*moldyn->atom[i].f.x;
+               moldyn->gvir.xz+=moldyn->atom[i].r.z*moldyn->atom[i].f.x;
+               moldyn->gvir.yz+=moldyn->atom[i].r.z*moldyn->atom[i].f.y;
+       }
+
+       return 0;
+}
+
+/*
+ * virial calculation
+ */
+
+//inline int virial_calc(t_atom *a,t_3dvec *f,t_3dvec *d) {
+int virial_calc(t_atom *a,t_3dvec *f,t_3dvec *d) {
+
+       a->virial.xx+=f->x*d->x;
+       a->virial.yy+=f->y*d->y;
+       a->virial.zz+=f->z*d->z;
+       a->virial.xy+=f->x*d->y;
+       a->virial.xz+=f->x*d->z;
+       a->virial.yz+=f->y*d->z;
+
+       return 0;
+}
+
+/*
+ * periodic boundary checking
+ */
+
+//inline int check_per_bound(t_moldyn *moldyn,t_3dvec *a) {
+int check_per_bound(t_moldyn *moldyn,t_3dvec *a) {
+       
+       double x,y,z;
+       t_3dvec *dim;
+
+       dim=&(moldyn->dim);
+
+       x=dim->x/2;
+       y=dim->y/2;
+       z=dim->z/2;
+
+       if(moldyn->status&MOLDYN_STAT_PBX) {
+               if(a->x>=x) a->x-=dim->x;
+               else if(-a->x>x) a->x+=dim->x;
+       }
+       if(moldyn->status&MOLDYN_STAT_PBY) {
+               if(a->y>=y) a->y-=dim->y;
+               else if(-a->y>y) a->y+=dim->y;
+       }
+       if(moldyn->status&MOLDYN_STAT_PBZ) {
+               if(a->z>=z) a->z-=dim->z;
+               else if(-a->z>z) a->z+=dim->z;
+       }
+
+       return 0;
+}
+        
+/*
+ * debugging / critical check functions
+ */
+
+int moldyn_bc_check(t_moldyn *moldyn) {
+
+       t_atom *atom;
+       t_3dvec *dim;
+       int i;
+       double x;
+       u8 byte;
+       int j,k;
+
+       atom=moldyn->atom;
+       dim=&(moldyn->dim);
+       x=dim->x/2;
+
+       for(i=0;i<moldyn->count;i++) {
+               if(atom[i].r.x>=dim->x/2||-atom[i].r.x>dim->x/2) {
+                       printf("FATAL: atom %d: x: %.20f (%.20f)\n",
+                              i,atom[i].r.x,dim->x/2);
+                       printf("diagnostic:\n");
+                       printf("-----------\natom.r.x:\n");
+                       for(j=0;j<8;j++) {
+                               memcpy(&byte,(u8 *)(&(atom[i].r.x))+j,1);
+                               for(k=0;k<8;k++)
+                                       printf("%d%c",
+                                       ((byte)&(1<<k))?1:0,
+                                       (k==7)?'\n':'|');
+                       }
+                       printf("---------------\nx=dim.x/2:\n");
+                       for(j=0;j<8;j++) {
+                               memcpy(&byte,(u8 *)(&x)+j,1);
+                               for(k=0;k<8;k++)
+                                       printf("%d%c",
+                                       ((byte)&(1<<k))?1:0,
+                                       (k==7)?'\n':'|');
                        }
+                       if(atom[i].r.x==x) printf("the same!\n");
+                       else printf("different!\n");
                }
+               if(atom[i].r.y>=dim->y/2||-atom[i].r.y>dim->y/2)
+                       printf("FATAL: atom %d: y: %.20f (%.20f)\n",
+                              i,atom[i].r.y,dim->y/2);
+               if(atom[i].r.z>=dim->z/2||-atom[i].r.z>dim->z/2)
+                       printf("FATAL: atom %d: z: %.20f (%.20f)\n",
+                              i,atom[i].r.z,dim->z/2);
        }
 
        return 0;
 }
 
+/*
+ * post processing functions
+ */
+
+int get_line(int fd,char *line,int max) {
+
+       int count,ret;
+
+       count=0;
+
+       while(1) {
+               if(count==max) return count;
+               ret=read(fd,line+count,1);
+               if(ret<=0) return ret;
+               if(line[count]=='\n') {
+                       line[count]='\0';
+                       return count+1;
+               }
+               count+=1;
+       }
+}
+