X-Git-Url: https://hackdaworld.org/gitweb/?a=blobdiff_plain;f=moldyn.c;h=433be6824c9663f9bfa745ca0b82d08b566abd2b;hb=refs%2Fheads%2Forigin;hp=52a716e2bdfb6552a1ee13bb22f0e5eb60e29380;hpb=dfbe75140f5a113f898809c529a882034507f6d1;p=physik%2Fposic.git diff --git a/moldyn.c b/moldyn.c index 52a716e..433be68 100644 --- a/moldyn.c +++ b/moldyn.c @@ -16,20 +16,11 @@ #include #include "moldyn.h" - -#include "math/math.h" -#include "init/init.h" -#include "random/random.h" -#include "visual/visual.h" -#include "list/list.h" - +#include "report/report.h" int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { - //int ret; - - //ret=moldyn_parse_argv(moldyn,argc,argv); - //if(ret<0) return ret; + printf("[moldyn] init\n"); memset(moldyn,0,sizeof(t_moldyn)); @@ -42,6 +33,7 @@ int moldyn_init(t_moldyn *moldyn,int argc,char **argv) { int moldyn_shutdown(t_moldyn *moldyn) { printf("[moldyn] shutdown\n"); + moldyn_log_shutdown(moldyn); link_cell_shutdown(moldyn); rand_close(&(moldyn->random)); @@ -52,12 +44,16 @@ int moldyn_shutdown(t_moldyn *moldyn) { int set_int_alg(t_moldyn *moldyn,u8 algo) { + printf("[moldyn] integration algorithm: "); + switch(algo) { case MOLDYN_INTEGRATE_VERLET: moldyn->integrate=velocity_verlet; + printf("velocity verlet\n"); break; default: printf("unknown integration algorithm: %02x\n",algo); + printf("unknown\n"); return -1; } @@ -68,6 +64,8 @@ int set_cutoff(t_moldyn *moldyn,double cutoff) { moldyn->cutoff=cutoff; + printf("[moldyn] cutoff [A]: %f\n",moldyn->cutoff); + return 0; } @@ -75,6 +73,17 @@ int set_temperature(t_moldyn *moldyn,double t_ref) { moldyn->t_ref=t_ref; + printf("[moldyn] temperature [K]: %f\n",moldyn->t_ref); + + return 0; +} + +int set_pressure(t_moldyn *moldyn,double p_ref) { + + moldyn->p_ref=p_ref; + + printf("[moldyn] pressure [bar]: %f\n",moldyn->p_ref/BAR); + return 0; } @@ -84,6 +93,18 @@ int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) { moldyn->t_tc=ttc; moldyn->p_tc=ptc; + printf("[moldyn] p/t scaling:\n"); + + printf(" p: %s",ptype?"yes":"no "); + if(ptype) + printf(" | type: %02x | factor: %f",ptype,ptc); + printf("\n"); + + printf(" t: %s",ttype?"yes":"no "); + if(ttype) + printf(" | type: %02x | factor: %f",ttype,ttc); + printf("\n"); + return 0; } @@ -93,12 +114,24 @@ int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) { moldyn->dim.y=y; moldyn->dim.z=z; + moldyn->volume=x*y*z; + if(visualize) { moldyn->vis.dim.x=x; moldyn->vis.dim.y=y; moldyn->vis.dim.z=z; } + moldyn->dv=0.000001*moldyn->volume; + + printf("[moldyn] dimensions in A and A^3 respectively:\n"); + printf(" x: %f\n",moldyn->dim.x); + printf(" y: %f\n",moldyn->dim.y); + printf(" z: %f\n",moldyn->dim.z); + printf(" volume: %f\n",moldyn->volume); + printf(" visualize simulation box: %s\n",visualize?"yes":"no"); + printf(" delta volume (pressure calc): %f\n",moldyn->dv); + return 0; } @@ -111,6 +144,8 @@ int set_nn_dist(t_moldyn *moldyn,double dist) { int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { + printf("[moldyn] periodic boundary conditions:\n"); + if(x) moldyn->status|=MOLDYN_STAT_PBX; @@ -120,65 +155,223 @@ int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) { if(z) moldyn->status|=MOLDYN_STAT_PBZ; + printf(" x: %s\n",x?"yes":"no"); + printf(" y: %s\n",y?"yes":"no"); + printf(" z: %s\n",z?"yes":"no"); + return 0; } -int set_potential1b(t_moldyn *moldyn,pf_func1b func,void *params) { +int set_potential1b(t_moldyn *moldyn,pf_func1b func) { moldyn->func1b=func; - moldyn->pot1b_params=params; return 0; } -int set_potential2b(t_moldyn *moldyn,pf_func2b func,void *params) { +int set_potential2b(t_moldyn *moldyn,pf_func2b func) { moldyn->func2b=func; - moldyn->pot2b_params=params; return 0; } -int set_potential3b(t_moldyn *moldyn,pf_func3b func,void *params) { +int set_potential3b_j1(t_moldyn *moldyn,pf_func2b func) { + + moldyn->func3b_j1=func; + + return 0; +} + +int set_potential3b_j2(t_moldyn *moldyn,pf_func2b func) { + + moldyn->func3b_j2=func; + + return 0; +} + +int set_potential3b_j3(t_moldyn *moldyn,pf_func2b func) { + + moldyn->func3b_j3=func; + + return 0; +} + +int set_potential3b_k1(t_moldyn *moldyn,pf_func3b func) { + + moldyn->func3b_k1=func; + + return 0; +} + +int set_potential3b_k2(t_moldyn *moldyn,pf_func3b func) { + + moldyn->func3b_k2=func; + + return 0; +} + +int set_potential_params(t_moldyn *moldyn,void *params) { + + moldyn->pot_params=params; + + return 0; +} + +int set_avg_skip(t_moldyn *moldyn,int skip) { + + printf("[moldyn] skip %d steps before starting average calc\n",skip); + moldyn->avg_skip=skip; + + return 0; +} + +int moldyn_set_log_dir(t_moldyn *moldyn,char *dir) { - moldyn->func3b=func; - moldyn->pot3b_params=params; + strncpy(moldyn->vlsdir,dir,127); return 0; } -int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) { +int moldyn_set_report(t_moldyn *moldyn,char *author,char *title) { + + strncpy(moldyn->rauthor,author,63); + strncpy(moldyn->rtitle,title,63); + + return 0; +} + +int moldyn_set_log(t_moldyn *moldyn,u8 type,int timer) { + + char filename[128]; + int ret; + + printf("[moldyn] set log: "); switch(type) { case LOG_TOTAL_ENERGY: moldyn->ewrite=timer; - moldyn->efd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + snprintf(filename,127,"%s/energy",moldyn->vlsdir); + moldyn->efd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); if(moldyn->efd<0) { - perror("[moldyn] efd open"); + perror("[moldyn] energy log fd open"); return moldyn->efd; } dprintf(moldyn->efd,"# total energy log file\n"); + printf("total energy (%d)\n",timer); break; case LOG_TOTAL_MOMENTUM: moldyn->mwrite=timer; - moldyn->mfd=open(fb,O_WRONLY|O_CREAT|O_TRUNC); + snprintf(filename,127,"%s/momentum",moldyn->vlsdir); + moldyn->mfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); if(moldyn->mfd<0) { - perror("[moldyn] mfd open"); + perror("[moldyn] momentum log fd open"); return moldyn->mfd; } dprintf(moldyn->efd,"# total momentum log file\n"); + printf("total momentum (%d)\n",timer); + break; + case LOG_PRESSURE: + moldyn->pwrite=timer; + snprintf(filename,127,"%s/pressure",moldyn->vlsdir); + moldyn->pfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->pfd<0) { + perror("[moldyn] pressure log file\n"); + return moldyn->pfd; + } + dprintf(moldyn->pfd,"# pressure log file\n"); + printf("pressure (%d)\n",timer); + break; + case LOG_TEMPERATURE: + moldyn->twrite=timer; + snprintf(filename,127,"%s/temperature",moldyn->vlsdir); + moldyn->tfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->tfd<0) { + perror("[moldyn] temperature log file\n"); + return moldyn->tfd; + } + dprintf(moldyn->tfd,"# temperature log file\n"); + printf("temperature (%d)\n",timer); break; case SAVE_STEP: moldyn->swrite=timer; - strncpy(moldyn->sfb,fb,63); + printf("save file (%d)\n",timer); break; case VISUAL_STEP: moldyn->vwrite=timer; - strncpy(moldyn->vfb,fb,63); - visual_init(&(moldyn->vis),fb); + ret=visual_init(&(moldyn->vis),moldyn->vlsdir); + if(ret<0) { + printf("[moldyn] visual init failure\n"); + return ret; + } + printf("visual file (%d)\n",timer); + break; + case CREATE_REPORT: + snprintf(filename,127,"%s/report.tex",moldyn->vlsdir); + moldyn->rfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->rfd<0) { + perror("[moldyn] report fd open"); + return moldyn->rfd; + } + printf("report -> "); + if(moldyn->efd) { + snprintf(filename,127,"%s/e_plot.scr", + moldyn->vlsdir); + moldyn->epfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->epfd<0) { + perror("[moldyn] energy plot fd open"); + return moldyn->epfd; + } + dprintf(moldyn->epfd,e_plot_script); + close(moldyn->epfd); + printf("energy "); + } + if(moldyn->pfd) { + snprintf(filename,127,"%s/pressure_plot.scr", + moldyn->vlsdir); + moldyn->ppfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->ppfd<0) { + perror("[moldyn] p plot fd open"); + return moldyn->ppfd; + } + dprintf(moldyn->ppfd,pressure_plot_script); + close(moldyn->ppfd); + printf("pressure "); + } + if(moldyn->tfd) { + snprintf(filename,127,"%s/temperature_plot.scr", + moldyn->vlsdir); + moldyn->tpfd=open(filename, + O_WRONLY|O_CREAT|O_EXCL, + S_IRUSR|S_IWUSR); + if(moldyn->tpfd<0) { + perror("[moldyn] t plot fd open"); + return moldyn->tpfd; + } + dprintf(moldyn->tpfd,temperature_plot_script); + close(moldyn->tpfd); + printf("temperature "); + } + dprintf(moldyn->rfd,report_start, + moldyn->rauthor,moldyn->rtitle); + printf("\n"); break; default: - printf("unknown log mechanism: %02x\n",type); + printf("unknown log type: %02x\n",type); return -1; } @@ -187,41 +380,111 @@ int moldyn_set_log(t_moldyn *moldyn,u8 type,char *fb,int timer) { int moldyn_log_shutdown(t_moldyn *moldyn) { + char sc[256]; + printf("[moldyn] log shutdown\n"); - if(moldyn->efd) close(moldyn->efd); + if(moldyn->efd) { + close(moldyn->efd); + if(moldyn->rfd) { + dprintf(moldyn->rfd,report_energy); + snprintf(sc,255,"cd %s && gnuplot e_plot.scr", + moldyn->vlsdir); + system(sc); + } + } if(moldyn->mfd) close(moldyn->mfd); + if(moldyn->pfd) { + close(moldyn->pfd); + if(moldyn->rfd) + dprintf(moldyn->rfd,report_pressure); + snprintf(sc,255,"cd %s && gnuplot pressure_plot.scr", + moldyn->vlsdir); + system(sc); + } + if(moldyn->tfd) { + close(moldyn->tfd); + if(moldyn->rfd) + dprintf(moldyn->rfd,report_temperature); + snprintf(sc,255,"cd %s && gnuplot temperature_plot.scr", + moldyn->vlsdir); + system(sc); + } + if(moldyn->rfd) { + dprintf(moldyn->rfd,report_end); + close(moldyn->rfd); + snprintf(sc,255,"cd %s && pdflatex report >/dev/null 2>&1", + moldyn->vlsdir); + system(sc); + snprintf(sc,255,"cd %s && pdflatex report >/dev/null 2>&1", + moldyn->vlsdir); + system(sc); + snprintf(sc,255,"cd %s && dvipdf report >/dev/null 2>&1", + moldyn->vlsdir); + system(sc); + } if(&(moldyn->vis)) visual_tini(&(moldyn->vis)); return 0; } +/* + * creating lattice functions + */ + int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, - u8 attr,u8 bnum,int a,int b,int c) { + u8 attr,u8 brand,int a,int b,int c,t_3dvec *origin) { - int count; + int new,count; int ret; - t_3dvec origin; - - count=a*b*c; + t_3dvec orig; + void *ptr; + t_atom *atom; - if(type==FCC) count*=4; + new=a*b*c; + count=moldyn->count; - if(type==DIAMOND) count*=8; + /* how many atoms do we expect */ + if(type==CUBIC) new*=1; + if(type==FCC) new*=4; + if(type==DIAMOND) new*=8; - moldyn->atom=malloc(count*sizeof(t_atom)); - if(moldyn->atom==NULL) { - perror("malloc (atoms)"); + /* allocate space for atoms */ + ptr=realloc(moldyn->atom,(count+new)*sizeof(t_atom)); + if(!ptr) { + perror("[moldyn] realloc (create lattice)"); return -1; } + moldyn->atom=ptr; + atom=&(moldyn->atom[count]); - v3_zero(&origin); + /* no atoms on the boundaries (only reason: it looks better!) */ + if(!origin) { + orig.x=0.5*lc; + orig.y=0.5*lc; + orig.z=0.5*lc; + } + else { + orig.x=origin->x; + orig.y=origin->y; + orig.z=origin->z; + } switch(type) { + case CUBIC: + set_nn_dist(moldyn,lc); + ret=cubic_init(a,b,c,lc,atom,&orig); + break; case FCC: - ret=fcc_init(a,b,c,lc,moldyn->atom,&origin); + if(!origin) + v3_scale(&orig,&orig,0.5); + set_nn_dist(moldyn,0.5*sqrt(2.0)*lc); + ret=fcc_init(a,b,c,lc,atom,&orig); break; case DIAMOND: - ret=diamond_init(a,b,c,lc,moldyn->atom,&origin); + if(!origin) + v3_scale(&orig,&orig,0.25); + set_nn_dist(moldyn,0.25*sqrt(3.0)*lc); + ret=diamond_init(a,b,c,lc,atom,&orig); break; default: printf("unknown lattice type (%02x)\n",type); @@ -229,30 +492,145 @@ int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass, } /* debug */ - if(ret!=count) { - printf("ok, there is something wrong ...\n"); - printf("calculated -> %d atoms\n",count); - printf("created -> %d atoms\n",ret); + if(ret!=new) { + printf("[moldyn] creating lattice failed\n"); + printf(" amount of atoms\n"); + printf(" - expected: %d\n",new); + printf(" - created: %d\n",ret); return -1; } - moldyn->count=count; - printf("[moldyn] created lattice with %d atoms\n",count); + moldyn->count+=new; + printf("[moldyn] created lattice with %d atoms\n",new); - while(count) { - count-=1; - moldyn->atom[count].element=element; - moldyn->atom[count].mass=mass; - moldyn->atom[count].attr=attr; - moldyn->atom[count].bnum=bnum; - check_per_bound(moldyn,&(moldyn->atom[count].r)); + for(ret=0;retatom; - count=++(moldyn->count); + count=(moldyn->count)++; - ptr=realloc(atom,count*sizeof(t_atom)); + ptr=realloc(atom,(count+1)*sizeof(t_atom)); if(!ptr) { perror("[moldyn] realloc (add atom)"); return -1; @@ -270,12 +648,16 @@ int add_atom(t_moldyn *moldyn,int element,double mass,u8 bnum,u8 attr, moldyn->atom=ptr; atom=moldyn->atom; - atom[count-1].r=*r; - atom[count-1].v=*v; - atom[count-1].element=element; - atom[count-1].mass=mass; - atom[count-1].bnum=bnum; - atom[count-1].attr=attr; + atom[count].r=*r; + atom[count].v=*v; + atom[count].element=element; + atom[count].mass=mass; + atom[count].brand=brand; + atom[count].tag=count; + atom[count].attr=attr; + + /* update total system mass */ + total_mass_calc(moldyn); return 0; } @@ -304,6 +686,8 @@ int thermal_init(t_moldyn *moldyn,u8 equi_init) { atom=moldyn->atom; random=&(moldyn->random); + printf("[moldyn] thermal init (equi init: %s)\n",equi_init?"yes":"no"); + /* gaussian distribution of velocities */ v3_zero(&p_total); for(i=0;icount;i++) { @@ -335,6 +719,32 @@ int thermal_init(t_moldyn *moldyn,u8 equi_init) { return 0; } +double total_mass_calc(t_moldyn *moldyn) { + + int i; + + moldyn->mass=0.0; + + for(i=0;icount;i++) + moldyn->mass+=moldyn->atom[i].mass; + + return moldyn->mass; +} + +double temperature_calc(t_moldyn *moldyn) { + + /* assume up to date kinetic energy, which is 3/2 N k_B T */ + + moldyn->t=(2.0*moldyn->ekin)/(3.0*K_BOLTZMANN*moldyn->count); + + return moldyn->t; +} + +double get_temperature(t_moldyn *moldyn) { + + return moldyn->t; +} + int scale_velocity(t_moldyn *moldyn,u8 equi_init) { int i; @@ -353,18 +763,21 @@ int scale_velocity(t_moldyn *moldyn,u8 equi_init) { count=0; for(i=0;icount;i++) { if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) { - e+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + e+=atom[i].mass*v3_absolute_square(&(atom[i].v)); count+=1; } } - if(count!=0) moldyn->t=(2.0*e)/(3.0*count*K_BOLTZMANN); + e*=0.5; + if(count!=0) moldyn->t=e/(1.5*count*K_BOLTZMANN); else return 0; /* no atoms involved in scaling! */ /* (temporary) hack for e,t = 0 */ if(e==0.0) { moldyn->t=0.0; - if(moldyn->t_ref!=0.0) + if(moldyn->t_ref!=0.0) { thermal_init(moldyn,equi_init); + return 0; + } else return 0; /* no scaling needed */ } @@ -376,39 +789,318 @@ int scale_velocity(t_moldyn *moldyn,u8 equi_init) { scale*=2.0; else if(moldyn->pt_scale&T_SCALE_BERENDSEN) - scale=1.0+moldyn->tau*(scale-1.0)/moldyn->t_tc; + scale=1.0+(scale-1.0)/moldyn->t_tc; scale=sqrt(scale); /* velocity scaling */ - for(i=0;icount;i++) + for(i=0;icount;i++) { if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) v3_scale(&(atom[i].v),&(atom[i].v),scale); + } return 0; } -double get_e_kin(t_moldyn *moldyn) { +double ideal_gas_law_pressure(t_moldyn *moldyn) { + + double p; + + p=moldyn->count*moldyn->t*K_BOLTZMANN/moldyn->volume; + + return p; +} + +double virial_sum(t_moldyn *moldyn) { int i; - t_atom *atom; + double v; + t_virial *virial; - atom=moldyn->atom; - moldyn->ekin=0.0; + /* virial (sum over atom virials) */ + v=0.0; + for(i=0;icount;i++) { + virial=&(moldyn->atom[i].virial); + v+=(virial->xx+virial->yy+virial->zz); + } + moldyn->virial=v; - for(i=0;icount;i++) - moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); + /* global virial (absolute coordinates) */ + virial=&(moldyn->gvir); + moldyn->gv=virial->xx+virial->yy+virial->zz; - return moldyn->ekin; + return moldyn->virial; +} + +double pressure_calc(t_moldyn *moldyn) { + + /* + * PV = NkT + + * with W = 1/3 sum_i f_i r_i (- skipped!) + * virial = sum_i f_i r_i + * + * => P = (2 Ekin + virial) / (3V) + */ + + /* assume up to date virial & up to date kinetic energy */ + + /* pressure (atom virials) */ + moldyn->p=2.0*moldyn->ekin+moldyn->virial; + moldyn->p/=(3.0*moldyn->volume); + + /* pressure (absolute coordinates) */ + moldyn->gp=2.0*moldyn->ekin+moldyn->gv; + moldyn->gp/=(3.0*moldyn->volume); + + return moldyn->p; +} + +int average_and_fluctuation_calc(t_moldyn *moldyn) { + + if(moldyn->total_stepsavg_skip) + return 0; + + int denom=moldyn->total_steps+1-moldyn->avg_skip; + + /* assume up to date energies, temperature, pressure etc */ + + /* kinetic energy */ + moldyn->k_sum+=moldyn->ekin; + moldyn->k2_sum+=(moldyn->ekin*moldyn->ekin); + moldyn->k_avg=moldyn->k_sum/denom; + moldyn->k2_avg=moldyn->k2_sum/denom; + moldyn->dk2_avg=moldyn->k2_avg-(moldyn->k_avg*moldyn->k_avg); + + /* potential energy */ + moldyn->v_sum+=moldyn->energy; + moldyn->v2_sum+=(moldyn->energy*moldyn->energy); + moldyn->v_avg=moldyn->v_sum/denom; + moldyn->v2_avg=moldyn->v2_sum/denom; + moldyn->dv2_avg=moldyn->v2_avg-(moldyn->v_avg*moldyn->v_avg); + + /* temperature */ + moldyn->t_sum+=moldyn->t; + moldyn->t_avg=moldyn->t_sum/denom; + + /* virial */ + moldyn->virial_sum+=moldyn->virial; + moldyn->virial_avg=moldyn->virial_sum/denom; + moldyn->gv_sum+=moldyn->gv; + moldyn->gv_avg=moldyn->gv_sum/denom; + + /* pressure */ + moldyn->p_sum+=moldyn->p; + moldyn->p_avg=moldyn->p_sum/denom; + moldyn->gp_sum+=moldyn->gp; + moldyn->gp_avg=moldyn->gp_sum/denom; + + return 0; +} + +int get_heat_capacity(t_moldyn *moldyn) { + + double temp2,ighc; + + /* averages needed for heat capacity calc */ + if(moldyn->total_stepsavg_skip) + return 0; + + /* (temperature average)^2 */ + temp2=moldyn->t_avg*moldyn->t_avg; + printf("[moldyn] specific heat capacity for T=%f K [J/(kg K)]\n", + moldyn->t_avg); + + /* ideal gas contribution */ + ighc=3.0*moldyn->count*K_BOLTZMANN/2.0; + printf(" ideal gas contribution: %f\n", + ighc/moldyn->mass*KILOGRAM/JOULE); + + /* specific heat for nvt ensemble */ + moldyn->c_v_nvt=moldyn->dv2_avg/(K_BOLTZMANN*temp2)+ighc; + moldyn->c_v_nvt/=moldyn->mass; + + /* specific heat for nve ensemble */ + moldyn->c_v_nve=ighc/(1.0-(moldyn->dv2_avg/(ighc*K_BOLTZMANN*temp2))); + moldyn->c_v_nve/=moldyn->mass; + + printf(" NVE: %f\n",moldyn->c_v_nve*KILOGRAM/JOULE); + printf(" NVT: %f\n",moldyn->c_v_nvt*KILOGRAM/JOULE); +printf(" --> sim: %f experimental: %f\n",moldyn->dv2_avg,1.5*moldyn->count*K_B2*moldyn->t_avg*moldyn->t_avg*(1.0-1.5*moldyn->count*K_BOLTZMANN/(700*moldyn->mass*JOULE/KILOGRAM))); + + return 0; +} + +double thermodynamic_pressure_calc(t_moldyn *moldyn) { + + t_3dvec dim,*tp; + double u_up,u_down,dv; + double scale,p; + t_atom *store; + + /* + * dU = - p dV + * + * => p = - dU/dV + * + */ + + scale=0.00001; + dv=8*scale*scale*scale*moldyn->volume; + + store=malloc(moldyn->count*sizeof(t_atom)); + if(store==NULL) { + printf("[moldyn] allocating store mem failed\n"); + return -1; + } + + /* save unscaled potential energy + atom/dim configuration */ + memcpy(store,moldyn->atom,moldyn->count*sizeof(t_atom)); + dim=moldyn->dim; + + /* scale up dimension and atom positions */ + scale_dim(moldyn,SCALE_UP,scale,TRUE,TRUE,TRUE); + scale_atoms(moldyn,SCALE_UP,scale,TRUE,TRUE,TRUE); + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + potential_force_calc(moldyn); + u_up=moldyn->energy; + + /* restore atomic configuration + dim */ + memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom)); + moldyn->dim=dim; + + /* scale down dimension and atom positions */ + scale_dim(moldyn,SCALE_DOWN,scale,TRUE,TRUE,TRUE); + scale_atoms(moldyn,SCALE_DOWN,scale,TRUE,TRUE,TRUE); + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + potential_force_calc(moldyn); + u_down=moldyn->energy; + + /* calculate pressure */ + p=-(u_up-u_down)/dv; +printf("-------> %.10f %.10f %f\n",u_up/EV/moldyn->count,u_down/EV/moldyn->count,p/BAR); + + /* restore atomic configuration + dim */ + memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom)); + moldyn->dim=dim; + + /* restore energy */ + potential_force_calc(moldyn); + + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + + return p; +} + +double get_pressure(t_moldyn *moldyn) { + + return moldyn->p; + +} + +int scale_dim(t_moldyn *moldyn,u8 dir,double scale,u8 x,u8 y,u8 z) { + + t_3dvec *dim; + + dim=&(moldyn->dim); + + if(dir==SCALE_UP) + scale=1.0+scale; + + if(dir==SCALE_DOWN) + scale=1.0-scale; + + if(x) dim->x*=scale; + if(y) dim->y*=scale; + if(z) dim->z*=scale; + + return 0; +} + +int scale_atoms(t_moldyn *moldyn,u8 dir,double scale,u8 x,u8 y,u8 z) { + + int i; + t_3dvec *r; + + if(dir==SCALE_UP) + scale=1.0+scale; + + if(dir==SCALE_DOWN) + scale=1.0-scale; + + for(i=0;icount;i++) { + r=&(moldyn->atom[i].r); + if(x) r->x*=scale; + if(y) r->y*=scale; + if(z) r->z*=scale; + } + + return 0; } -double get_e_pot(t_moldyn *moldyn) { +int scale_volume(t_moldyn *moldyn) { + + t_3dvec *dim,*vdim; + double scale; + t_linkcell *lc; + + vdim=&(moldyn->vis.dim); + dim=&(moldyn->dim); + lc=&(moldyn->lc); + + /* scaling factor */ + if(moldyn->pt_scale&P_SCALE_BERENDSEN) { + scale=1.0-(moldyn->p_ref-moldyn->p)/moldyn->p_tc; + scale=pow(scale,ONE_THIRD); + } + else { + scale=pow(moldyn->p/moldyn->p_ref,ONE_THIRD); + } +moldyn->debug=scale; + + /* scale the atoms and dimensions */ + scale_atoms(moldyn,SCALE_DIRECT,scale,TRUE,TRUE,TRUE); + scale_dim(moldyn,SCALE_DIRECT,scale,TRUE,TRUE,TRUE); + + /* visualize dimensions */ + if(vdim->x!=0) { + vdim->x=dim->x; + vdim->y=dim->y; + vdim->z=dim->z; + } + + /* recalculate scaled volume */ + moldyn->volume=dim->x*dim->y*dim->z; + + /* adjust/reinit linkcell */ + if(((int)(dim->x/moldyn->cutoff)!=lc->nx)|| + ((int)(dim->y/moldyn->cutoff)!=lc->ny)|| + ((int)(dim->z/moldyn->cutoff)!=lc->nx)) { + link_cell_shutdown(moldyn); + link_cell_init(moldyn,QUIET); + } else { + lc->x*=scale; + lc->y*=scale; + lc->z*=scale; + } + + return 0; - return moldyn->energy; } -double update_e_kin(t_moldyn *moldyn) { +double e_kin_calc(t_moldyn *moldyn) { + + int i; + t_atom *atom; + + atom=moldyn->atom; + moldyn->ekin=0.0; + + for(i=0;icount;i++) + moldyn->ekin+=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v)); - return(get_e_kin(moldyn)); + return moldyn->ekin; } double get_total_energy(t_moldyn *moldyn) { @@ -439,12 +1131,6 @@ double estimate_time_step(t_moldyn *moldyn,double nn_dist) { /* nn_dist is the nearest neighbour distance */ - if(moldyn->t==5.0) { - printf("[moldyn] i do not estimate timesteps below %f K!\n", - MOLDYN_CRITICAL_EST_TEMP); - return 23.42; - } - tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t); return tau; @@ -456,13 +1142,10 @@ double estimate_time_step(t_moldyn *moldyn,double nn_dist) { /* linked list / cell method */ -int link_cell_init(t_moldyn *moldyn) { +int link_cell_init(t_moldyn *moldyn,u8 vol) { t_linkcell *lc; int i; - int fd; - - fd=open("/dev/null",O_WRONLY); lc=&(moldyn->lc); @@ -477,11 +1160,18 @@ int link_cell_init(t_moldyn *moldyn) { lc->cells=lc->nx*lc->ny*lc->nz; lc->subcell=malloc(lc->cells*sizeof(t_list)); - printf("[moldyn] initializing linked cells (%d)\n",lc->cells); + if(lc->cells<27) + printf("[moldyn] FATAL: less then 27 subcells!\n"); + + if(vol) { + printf("[moldyn] initializing linked cells (%d)\n",lc->cells); + printf(" x: %d x %f A\n",lc->nx,lc->x); + printf(" y: %d x %f A\n",lc->ny,lc->y); + printf(" z: %d x %f A\n",lc->nz,lc->z); + } for(i=0;icells;i++) - //list_init(&(lc->subcell[i]),1); - list_init(&(lc->subcell[i]),fd); + list_init_f(&(lc->subcell[i])); link_cell_update(moldyn); @@ -491,26 +1181,30 @@ int link_cell_init(t_moldyn *moldyn) { int link_cell_update(t_moldyn *moldyn) { int count,i,j,k; - int nx,ny,nz; + int nx,ny; t_atom *atom; t_linkcell *lc; + double x,y,z; atom=moldyn->atom; lc=&(moldyn->lc); nx=lc->nx; ny=lc->ny; - nz=lc->nz; + + x=moldyn->dim.x/2; + y=moldyn->dim.y/2; + z=moldyn->dim.z/2; for(i=0;icells;i++) - list_destroy(&(moldyn->lc.subcell[i])); + list_destroy_f(&(lc->subcell[i])); for(count=0;countcount;count++) { - i=(atom[count].r.x+(moldyn->dim.x/2))/lc->x; - j=(atom[count].r.y+(moldyn->dim.y/2))/lc->y; - k=(atom[count].r.z+(moldyn->dim.z/2))/lc->z; - list_add_immediate_ptr(&(moldyn->lc.subcell[i+j*nx+k*nx*ny]), - &(atom[count])); + i=((atom[count].r.x+(moldyn->dim.x/2))/lc->x); + j=((atom[count].r.y+(moldyn->dim.y/2))/lc->y); + k=((atom[count].r.z+(moldyn->dim.z/2))/lc->z); + list_add_immediate_f(&(lc->subcell[i+j*nx+k*nx*ny]), + &(atom[count])); } return 0; @@ -568,9 +1262,8 @@ int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) { } lc->dnlc=count1; - lc->countn=27; - return count2; + return count1; } int link_cell_shutdown(t_moldyn *moldyn) { @@ -581,7 +1274,9 @@ int link_cell_shutdown(t_moldyn *moldyn) { lc=&(moldyn->lc); for(i=0;inx*lc->ny*lc->nz;i++) - list_shutdown(&(moldyn->lc.subcell[i])); + list_destroy_f(&(moldyn->lc.subcell[i])); + + free(lc->subcell); return 0; } @@ -593,28 +1288,32 @@ int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) { t_moldyn_schedule *schedule; schedule=&(moldyn->schedule); - count=++(schedule->content_count); + count=++(schedule->total_sched); - ptr=realloc(moldyn->schedule.runs,count*sizeof(int)); + ptr=realloc(schedule->runs,count*sizeof(int)); if(!ptr) { perror("[moldyn] realloc (runs)"); return -1; } - moldyn->schedule.runs=ptr; - moldyn->schedule.runs[count-1]=runs; + schedule->runs=ptr; + schedule->runs[count-1]=runs; ptr=realloc(schedule->tau,count*sizeof(double)); if(!ptr) { perror("[moldyn] realloc (tau)"); return -1; } - moldyn->schedule.tau=ptr; - moldyn->schedule.tau[count-1]=tau; + schedule->tau=ptr; + schedule->tau[count-1]=tau; + + printf("[moldyn] schedule added:\n"); + printf(" number: %d | runs: %d | tau: %f\n",count-1,runs,tau); + return 0; } -int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { +int moldyn_set_schedule_hook(t_moldyn *moldyn,set_hook hook,void *hook_params) { moldyn->schedule.hook=hook; moldyn->schedule.hook_params=hook_params; @@ -632,34 +1331,45 @@ int moldyn_set_schedule_hook(t_moldyn *moldyn,void *hook,void *hook_params) { int moldyn_integrate(t_moldyn *moldyn) { - int i,sched; - unsigned int e,m,s,v; - t_3dvec p; - t_moldyn_schedule *schedule; + int i; + unsigned int e,m,s,v,p,t; + t_3dvec momentum; + t_moldyn_schedule *sched; t_atom *atom; int fd; - char fb[128]; + char dir[128]; double ds; + double energy_scale; + //double tp; - schedule=&(moldyn->schedule); + sched=&(moldyn->schedule); atom=moldyn->atom; /* initialize linked cell method */ - link_cell_init(moldyn); + link_cell_init(moldyn,VERBOSE); /* logging & visualization */ e=moldyn->ewrite; m=moldyn->mwrite; s=moldyn->swrite; v=moldyn->vwrite; + p=moldyn->pwrite; + t=moldyn->twrite; /* sqaure of some variables */ moldyn->tau_square=moldyn->tau*moldyn->tau; moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff; + + /* energy scaling factor */ + energy_scale=moldyn->count*EV; + /* calculate initial forces */ potential_force_calc(moldyn); +#ifdef DEBUG +return 0; +#endif - /* do some checks before we actually start calculating bullshit */ + /* some stupid checks before we actually start calculating bullshit */ if(moldyn->cutoff>0.5*moldyn->dim.x) printf("[moldyn] warning: cutoff > 0.5 x dim.x\n"); if(moldyn->cutoff>0.5*moldyn->dim.y) @@ -672,12 +1382,22 @@ int moldyn_integrate(t_moldyn *moldyn) { /* zero absolute time */ moldyn->time=0.0; - for(sched=0;schedschedule.content_count;sched++) { + moldyn->total_steps=0; + + /* debugging, ignore */ + moldyn->debug=0; + + /* tell the world */ + printf("[moldyn] integration start, go get a coffee ...\n"); + + /* executing the schedule */ + sched->count=0; + while(sched->counttotal_sched) { /* setting amount of runs and finite time step size */ - moldyn->tau=schedule->tau[sched]; + moldyn->tau=sched->tau[sched->count]; moldyn->tau_square=moldyn->tau*moldyn->tau; - moldyn->time_steps=schedule->runs[sched]; + moldyn->time_steps=sched->runs[sched->count]; /* integration according to schedule */ @@ -686,35 +1406,57 @@ int moldyn_integrate(t_moldyn *moldyn) { /* integration step */ moldyn->integrate(moldyn); + /* calculate kinetic energy, temperature and pressure */ + e_kin_calc(moldyn); + temperature_calc(moldyn); + virial_sum(moldyn); + pressure_calc(moldyn); + average_and_fluctuation_calc(moldyn); + /* p/t scaling */ if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT)) scale_velocity(moldyn,FALSE); - - /* increase absolute time */ - moldyn->time+=moldyn->tau; + if(moldyn->pt_scale&(P_SCALE_BERENDSEN|P_SCALE_DIRECT)) + scale_volume(moldyn); /* check for log & visualization */ if(e) { if(!(i%e)) dprintf(moldyn->efd, - "%.15f %.45f %.45f %.45f\n", - moldyn->time,update_e_kin(moldyn), - moldyn->energy, - get_total_energy(moldyn)); + "%f %f %f %f\n", + moldyn->time,moldyn->ekin/energy_scale, + moldyn->energy/energy_scale, + get_total_energy(moldyn)/energy_scale); } if(m) { if(!(i%m)) { - p=get_total_p(moldyn); + momentum=get_total_p(moldyn); dprintf(moldyn->mfd, - "%.15f %.45f\n",moldyn->time, - v3_norm(&p)); + "%f %f %f %f %f\n",moldyn->time, + momentum.x,momentum.y,momentum.z, + v3_norm(&momentum)); + } + } + if(p) { + if(!(i%p)) { + dprintf(moldyn->pfd, + "%f %f %f %f %f\n",moldyn->time, + moldyn->p/BAR,moldyn->p_avg/BAR, + moldyn->gp/BAR,moldyn->gp_avg/BAR); + } + } + if(t) { + if(!(i%t)) { + dprintf(moldyn->tfd, + "%f %f %f\n", + moldyn->time,moldyn->t,moldyn->t_avg); } } if(s) { if(!(i%s)) { - snprintf(fb,128,"%s-%f-%.15f.save",moldyn->sfb, - moldyn->t,i*moldyn->tau); - fd=open(fb,O_WRONLY|O_TRUNC|O_CREAT); + snprintf(dir,128,"%s/s-%07.f.save", + moldyn->vlsdir,moldyn->time); + fd=open(dir,O_WRONLY|O_TRUNC|O_CREAT); if(fd<0) perror("[moldyn] save fd open"); else { write(fd,moldyn,sizeof(t_moldyn)); @@ -728,16 +1470,35 @@ int moldyn_integrate(t_moldyn *moldyn) { if(!(i%v)) { visual_atoms(&(moldyn->vis),moldyn->time, moldyn->atom,moldyn->count); - printf("\rsched: %d, steps: %d",sched,i); - fflush(stdout); } } + /* display progress */ + if(!(i%10)) { + printf("\rsched:%d, steps:%d, T:%3.1f/%3.1f P:%4.1f/%4.1f V:%6.1f", + sched->count,i, + moldyn->t,moldyn->t_avg, + moldyn->p_avg/BAR,moldyn->p/BAR, + moldyn->volume); + fflush(stdout); + } + + /* increase absolute time */ + moldyn->time+=moldyn->tau; + moldyn->total_steps+=1; + } /* check for hooks */ - if(schedule->hook) - schedule->hook(moldyn,schedule->hook_params); + if(sched->hook) { + printf("\n ## schedule hook %d/%d start ##\n", + sched->count+1,sched->total_sched-1); + sched->hook(moldyn,sched->hook_params); + printf(" ## schedule hook end ##\n"); + } + + /* increase the schedule counter */ + sched->count+=1; } @@ -749,7 +1510,7 @@ int moldyn_integrate(t_moldyn *moldyn) { int velocity_verlet(t_moldyn *moldyn) { int i,count; - double tau,tau_square; + double tau,tau_square,h; t_3dvec delta; t_atom *atom; @@ -760,14 +1521,15 @@ int velocity_verlet(t_moldyn *moldyn) { for(i=0;ipotential_force_function(moldyn); for(i=0;icount; itom=moldyn->atom; @@ -815,31 +1576,58 @@ int potential_force_calc(t_moldyn *moldyn) { /* reset energy */ moldyn->energy=0.0; + /* reset global virial */ + memset(&(moldyn->gvir),0,sizeof(t_virial)); + + /* reset force, site energy and virial of every atom */ for(i=0;ixx=0.0; + virial->yy=0.0; + virial->zz=0.0; + virial->xy=0.0; + virial->xz=0.0; + virial->yz=0.0; + + /* reset site energy */ + itom[i].e=0.0; + + } + + /* get energy, force and virial of every atom */ + + /* first (and only) loop over atoms i */ + for(i=0;ifunc1b(moldyn,&(itom[i])); + if(moldyn->func1b) + moldyn->func1b(moldyn,&(itom[i])); + + if(!(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP))) + continue; /* 2 body pair potential/force */ - if(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)) { - link_cell_neighbour_index(moldyn, - (itom[i].r.x+moldyn->dim.x/2)/lc->x, - (itom[i].r.y+moldyn->dim.y/2)/lc->y, - (itom[i].r.z+moldyn->dim.z/2)/lc->z, - neighbour_i); + link_cell_neighbour_index(moldyn, + (itom[i].r.x+moldyn->dim.x/2)/lc->x, + (itom[i].r.y+moldyn->dim.y/2)/lc->y, + (itom[i].r.z+moldyn->dim.z/2)/lc->z, + neighbour_i); - countn=lc->countn; - dnlc=lc->dnlc; + dnlc=lc->dnlc; - for(j=0;jfunc2b) { + for(j=0;j<27;j++) { this=&(neighbour_i[j]); - list_reset(this); + list_reset_f(this); if(this->start==NULL) continue; @@ -853,602 +1641,299 @@ int potential_force_calc(t_moldyn *moldyn) { continue; if((jtom->attr&ATOM_ATTR_2BP)& - (itom[i].attr&ATOM_ATTR_2BP)) + (itom[i].attr&ATOM_ATTR_2BP)) { moldyn->func2b(moldyn, &(itom[i]), jtom, - bc_ij); - - /* 3 body potential/force */ - - if(!(itom[i].attr&ATOM_ATTR_3BP)|| - !(jtom->attr&ATOM_ATTR_3BP)) - continue; - - /* - * according to mr. nordlund, we dont need to take the - * sum over all atoms now, as 'this is centered' around - * atom i ... - * i am not quite sure though! there is a not vanishing - * part even if f_c_ik is zero ... - * this analytical potentials suck! - * switching from mc to md to dft soon! - */ - - // link_cell_neighbour_index(moldyn, - // (jtom->r.x+moldyn->dim.x/2)/lc->x, - // (jtom->r.y+moldyn->dim.y/2)/lc->y, - // (jtom->r.z+moldyn->dim.z/2)/lc->z, - // neighbour_j); - -// /* neighbours of j */ -// for(k=0;kcountn;k++) { -// -// that=&(neighbour_j[k]); -// list_reset(that); -// -// if(that->start==NULL) -// continue; -// -// bc_ijk=(kdnlc)?0:1; -// -// do { -// -// ktom=that->current->data; -// -// if(!(ktom->attr&ATOM_ATTR_3BP)) -// continue; -// -// if(ktom==jtom) -// continue; -// -// if(ktom==&(itom[i])) -// continue; -// -// moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk); -// -/* } while(list_next(that)!=\ */ -// L_NO_NEXT_ELEMENT); -// -// } - - /* copy the neighbour lists */ - memcpy(neighbour_i2,neighbour_i, - 27*sizeof(t_list)); - - /* get neighbours of i */ - for(k=0;kstart==NULL) - continue; + } + } - bc_ijk=(kcurrent->data; + /* copy the neighbour lists */ + memcpy(neighbour_i2,neighbour_i,27*sizeof(t_list)); - if(!(ktom->attr&ATOM_ATTR_3BP)) - continue; + /* second loop over atoms j */ + for(j=0;j<27;j++) { - if(ktom==jtom) - continue; + this=&(neighbour_i[j]); + list_reset_f(this); - if(ktom==&(itom[i])) + if(this->start==NULL) continue; -printf("Debug: atom %d before 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x); - moldyn->func3b(moldyn,&(itom[i]),jtom,ktom,bc_ijk); -printf("Debug: atom %d after 3bp: %08x %08x %08x | %.15f %.15f %.15f\n",i,&itom[i],jtom,ktom,itom[i].r.x,itom[i].f.x,itom[i].v.x); - - } while(list_next(that)!=\ - L_NO_NEXT_ELEMENT); + bc_ij=(jfunc2b_post) - mlodyn->func2b_post(moldyn, - &(itom[i]), - jtom,bc_ij); + do { + jtom=this->current->data; - } - } - } + if(jtom==&(itom[i])) + continue; - return 0; -} + if(!(jtom->attr&ATOM_ATTR_3BP)) + continue; -/* - * periodic boundayr checking - */ + /* reset 3bp run */ + moldyn->run3bp=1; -int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { - - double x,y,z; - t_3dvec *dim; + if(moldyn->func3b_j1) + moldyn->func3b_j1(moldyn, + &(itom[i]), + jtom, + bc_ij); - dim=&(moldyn->dim); + /* in first j loop, 3bp run can be skipped */ + if(!(moldyn->run3bp)) + continue; + + /* first loop over atoms k */ + if(moldyn->func3b_k1) { - x=0.5*dim->x; - y=0.5*dim->y; - z=0.5*dim->z; + for(k=0;k<27;k++) { - if(moldyn->status&MOLDYN_STAT_PBX) { - if(a->x>=x) a->x-=dim->x; - else if(-a->x>x) a->x+=dim->x; - } - if(moldyn->status&MOLDYN_STAT_PBY) { - if(a->y>=y) a->y-=dim->y; - else if(-a->y>y) a->y+=dim->y; - } - if(moldyn->status&MOLDYN_STAT_PBZ) { - if(a->z>=z) a->z-=dim->z; - else if(-a->z>z) a->z+=dim->z; - } - - return 0; -} - + that=&(neighbour_i2[k]); + list_reset_f(that); + + if(that->start==NULL) + continue; -/* - * example potentials - */ + bc_ik=(kcurrent->data; - t_ho_params *params; - t_3dvec force,distance; - double d; - double sc,equi_dist; + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; - params=moldyn->pot2b_params; - sc=params->spring_constant; - equi_dist=params->equilibrium_distance; + if(ktom==jtom) + continue; - v3_sub(&distance,&(ai->r),&(aj->r)); - - if(bc) check_per_bound(moldyn,&distance); - d=v3_norm(&distance); - if(d<=moldyn->cutoff) { - /* energy is 1/2 (d-d0)^2, but we will add this twice ... */ - moldyn->energy+=(0.25*sc*(d-equi_dist)*(d-equi_dist)); - v3_scale(&force,&distance,-sc*(1.0-(equi_dist/d))); - v3_add(&(ai->f),&(ai->f),&force); - } + if(ktom==&(itom[i])) + continue; - return 0; -} + moldyn->func3b_k1(moldyn, + &(itom[i]), + jtom, + ktom, + bc_ik|bc_ij); -/* lennard jones potential & force for one sort of atoms */ - -int lennard_jones(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { - - t_lj_params *params; - t_3dvec force,distance; - double d,h1,h2; - double eps,sig6,sig12; - - params=moldyn->pot2b_params; - eps=params->epsilon4; - sig6=params->sigma6; - sig12=params->sigma12; - - v3_sub(&distance,&(ai->r),&(aj->r)); - if(bc) check_per_bound(moldyn,&distance); - d=v3_absolute_square(&distance); /* 1/r^2 */ - if(d<=moldyn->cutoff_square) { - d=1.0/d; /* 1/r^2 */ - h2=d*d; /* 1/r^4 */ - h2*=d; /* 1/r^6 */ - h1=h2*h2; /* 1/r^12 */ - /* energy is eps*..., but we will add this twice ... */ - moldyn->energy+=0.5*eps*(sig12*h1-sig6*h2); - h2*=d; /* 1/r^8 */ - h1*=d; /* 1/r^14 */ - h2*=6*sig6; - h1*=12*sig12; - d=+h1-h2; - d*=eps; - v3_scale(&force,&distance,d); - v3_add(&(ai->f),&(ai->f),&force); - } + } while(list_next_f(that)!=\ + L_NO_NEXT_ELEMENT); - return 0; -} + } -/* - * tersoff potential & force for 2 sorts of atoms - */ + } -/* create mixed terms from parameters and set them */ -int tersoff_mult_complete_params(t_tersoff_mult_params *p) { - - printf("[moldyn] tersoff parameter completion\n"); - p->Smixed=sqrt(p->S[0]*p->S[1]); - p->Rmixed=sqrt(p->R[0]*p->R[1]); - p->Amixed=sqrt(p->A[0]*p->A[1]); - p->Bmixed=sqrt(p->B[0]*p->B[1]); - p->lambda_m=0.5*(p->lambda[0]+p->lambda[1]); - p->mu_m=0.5*(p->mu[0]+p->mu[1]); - - printf("[moldyn] tersoff mult parameter info:\n"); - printf(" S (m) | %.12f | %.12f | %.12f\n",p->S[0],p->S[1],p->Smixed); - printf(" R (m) | %.12f | %.12f | %.12f\n",p->R[0],p->R[1],p->Rmixed); - printf(" A (eV) | %f | %f | %f\n",p->A[0]/EV,p->A[1]/EV,p->Amixed/EV); - printf(" B (eV) | %f | %f | %f\n",p->B[0]/EV,p->B[1]/EV,p->Bmixed/EV); - printf(" lambda | %f | %f | %f\n",p->lambda[0],p->lambda[1], - p->lambda_m); - printf(" mu | %f | %f | %f\n",p->mu[0],p->mu[1],p->mu_m); - printf(" beta | %.10f | %.10f\n",p->beta[0],p->beta[1]); - printf(" n | %f | %f\n",p->n[0],p->n[1]); - printf(" c | %f | %f\n",p->c[0],p->c[1]); - printf(" d | %f | %f\n",p->d[0],p->d[1]); - printf(" h | %f | %f\n",p->h[0],p->h[1]); - printf(" chi | %f \n",p->chi); + if(moldyn->func3b_j2) + moldyn->func3b_j2(moldyn, + &(itom[i]), + jtom, + bc_ij); - return 0; -} + /* second loop over atoms k */ + if(moldyn->func3b_k2) { -/* tersoff 1 body part */ -int tersoff_mult_1bp(t_moldyn *moldyn,t_atom *ai) { + for(k=0;k<27;k++) { - int num; - t_tersoff_mult_params *params; - t_tersoff_exchange *exchange; - - num=ai->bnum; - params=moldyn->pot1b_params; - exchange=&(params->exchange); + that=&(neighbour_i2[k]); + list_reset_f(that); + + if(that->start==NULL) + continue; - /* - * simple: point constant parameters only depending on atom i to - * their right values - */ + bc_ik=(kbeta=&(params->beta[num]); - exchange->n=&(params->n[num]); - exchange->c=&(params->c[num]); - exchange->d=&(params->d[num]); - exchange->h=&(params->h[num]); + do { - exchange->betan=pow(*(exchange->beta),*(exchange->n)); - exchange->c2=params->c[num]*params->c[num]; - exchange->d2=params->d[num]*params->d[num]; - exchange->c2d2=exchange->c2/exchange->d2; + ktom=that->current->data; - return 0; -} - -/* tersoff 2 body part */ -int tersoff_mult_2bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,u8 bc) { - - t_tersoff_mult_params *params; - t_tersoff_exchange *exchange; - t_3dvec dist_ij,force; - double d_ij; - double A,B,R,S,lambda,mu; - double f_r,df_r; - double f_c,df_c; - int num; - double s_r; - double arg; - double scale; + if(!(ktom->attr&ATOM_ATTR_3BP)) + continue; - params=moldyn->pot2b_params; - num=ai->bnum; - exchange=&(params->exchange); + if(ktom==jtom) + continue; - exchange->run3bp=0; - - /* - * we need: f_c, df_c, f_r, df_r - * - * therefore we need: R, S, A, lambda - */ + if(ktom==&(itom[i])) + continue; - v3_sub(&dist_ij,&(ai->r),&(aj->r)); + moldyn->func3b_k2(moldyn, + &(itom[i]), + jtom, + ktom, + bc_ik|bc_ij); - if(bc) check_per_bound(moldyn,&dist_ij); + } while(list_next_f(that)!=\ + L_NO_NEXT_ELEMENT); - d_ij=v3_norm(&dist_ij); + } + + } - /* save for use in 3bp */ - exchange->d_ij=d_ij; - exchange->dist_ij=dist_ij; - exchange->d_ij2=d_ij*d_ij; + /* 2bp post function */ + if(moldyn->func3b_j3) { + moldyn->func3b_j3(moldyn, + &(itom[i]), + jtom,bc_ij); + } + + } while(list_next_f(this)!=L_NO_NEXT_ELEMENT); + + } + +#ifdef DEBUG + //printf("\n\n"); +#endif +#ifdef VDEBUG + printf("\n\n"); +#endif - /* constants */ - if(num==aj->bnum) { - S=params->S[num]; - R=params->R[num]; - A=params->A[num]; - B=params->B[num]; - lambda=params->lambda[num]; - mu=params->mu[num]; - params->exchange.chi=1.0; } - else { - S=params->Smixed; - R=params->Rmixed; - A=params->Amixed; - B=params->Bmixed; - lambda=params->lambda_m; - mu=params->mu_m; - params->exchange.chi=params->chi; - } - - if(d_ij>S) - return 0; - f_r=A*exp(-lambda*d_ij); - df_r=-lambda*f_r/d_ij; +#ifdef DEBUG + printf("\nATOM 0: %f %f %f\n\n",itom->f.x,itom->f.y,itom->f.z); +#endif - /* f_a, df_a calc + save for 3bp use */ - exchange->f_a=-B*exp(-mu*d_ij); - exchange->df_a=-mu*exchange->f_a/d_ij; - - if(d_ijgvir.xx+=moldyn->atom[i].r.x*moldyn->atom[i].f.x; + moldyn->gvir.yy+=moldyn->atom[i].r.y*moldyn->atom[i].f.y; + moldyn->gvir.zz+=moldyn->atom[i].r.z*moldyn->atom[i].f.z; + moldyn->gvir.xy+=moldyn->atom[i].r.y*moldyn->atom[i].f.x; + moldyn->gvir.xz+=moldyn->atom[i].r.z*moldyn->atom[i].f.x; + moldyn->gvir.yz+=moldyn->atom[i].r.z*moldyn->atom[i].f.y; } - /* add forces */ - v3_add(&(ai->f),&(ai->f),&force); - /* energy is 0.5 f_r f_c ... */ - moldyn->energy+=(0.5*f_r*f_c); - - /* save for use in 3bp */ - exchange->f_c=f_c; - exchange->df_c=df_c; - - /* enable the run of 3bp function */ - exchange->run3bp=1; - - /* reset 3bp sums */ - exchange->3bp_sum1=0.0; - exchange->3bp_sum2=0.0; - return 0; } -/* tersoff 2 body post part */ - -int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { - - /* here we have to allow for the 3bp sums */ - - t_tersoff_mult_params *params; - t_tersoff_exchange *exchange; - - t_3dvec force,temp,*db_ij; - double db_ij_scale1,db_ij_scale2; - double b_ij; - double f_c,df_c,f_a,df_a; +/* + * virial calculation + */ - params=moldyn->pot2b_params; - exchange=&(moldyn->exchange); +//inline int virial_calc(t_atom *a,t_3dvec *f,t_3dvec *d) { +int virial_calc(t_atom *a,t_3dvec *f,t_3dvec *d) { - db_ij=&(exchange->db_ij); - f_c=exchange->f_c; - df_c=exchange->df_c; - f_a=exchange->f_a; - df_a=exchange->df_a; + a->virial.xx+=f->x*d->x; + a->virial.yy+=f->y*d->y; + a->virial.zz+=f->z*d->z; + a->virial.xy+=f->x*d->y; + a->virial.xz+=f->x*d->z; + a->virial.yz+=f->y*d->z; - db_ij_scale1=(1+betan*3bp_sum1); - db_ij_scale2=(n*betan*3bp_sum2); - help=pow(db_ij_scale1,-1.0/(2*n)-1); - b_ij=chi*db_ij_scale1*help; - db_ij_scale1=-chi/(2*n)*help; + return 0; +} - v3_scale(db_ij,db_ij,(db_ij_scale1*db_ij_scale2)); - v3_scale(db_ij,db_ij,f_a); +/* + * periodic boundary checking + */ - v3_scale(&temp,dist_ij,b_ij*df_a); +//inline int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { +int check_per_bound(t_moldyn *moldyn,t_3dvec *a) { + + double x,y,z; + t_3dvec *dim; - v3_add(&force,&temp,db_ij); - v3_scale(&force,&force,f_c); + dim=&(moldyn->dim); - v3_scale(&temp,&dist_ij,f_a*b_ij*df_c); + x=dim->x/2; + y=dim->y/2; + z=dim->z/2; - /* add energy of 3bp sum */ - moldyn->energy+=(0.5*f_c*b_ij*f_a); - /* add force of 3bp calculation */ - v3_add(&(ai->f),&temp,&force); + if(moldyn->status&MOLDYN_STAT_PBX) { + if(a->x>=x) a->x-=dim->x; + else if(-a->x>x) a->x+=dim->x; + } + if(moldyn->status&MOLDYN_STAT_PBY) { + if(a->y>=y) a->y-=dim->y; + else if(-a->y>y) a->y+=dim->y; + } + if(moldyn->status&MOLDYN_STAT_PBZ) { + if(a->z>=z) a->z-=dim->z; + else if(-a->z>z) a->z+=dim->z; + } return 0; } + +/* + * debugging / critical check functions + */ -/* tersoff 3 body part */ - -int tersoff_mult_3bp(t_moldyn *moldyn,t_atom *ai,t_atom *aj,t_atom *ak,u8 bc) { +int moldyn_bc_check(t_moldyn *moldyn) { - t_tersoff_mult_params *params; - t_tersoff_exchange *exchange; - t_3dvec dist_ij,dist_ik,dist_jk; - t_3dvec temp,force; - double R,S,s_r; - double d_ij,d_ij2,d_ik,d_jk; - double f_c,df_c,b_ij,f_a,df_a; - double f_c_ik,df_c_ik,arg; - double scale; - double chi; - double n,c,d,h,beta,betan; - double c2,d2,c2d2; - double numer,denom; - double theta,cos_theta,sin_theta; - double d_theta,d_theta1,d_theta2; - double h_cos,h_cos2,d2_h_cos2; - double frac1,bracket1,bracket2,bracket2_n_1,bracket2_n; - double bracket3,bracket3_pow_1,bracket3_pow; - int num; - - params=moldyn->pot3b_params; - num=ai->bnum; - exchange=&(params->exchange); - - if(!(exchange->run3bp)) - return 0; + t_atom *atom; + t_3dvec *dim; + int i; + double x; + u8 byte; + int j,k; - /* - * we need: f_c, d_fc, b_ij, db_ij, f_a, df_a - * - * we got f_c, df_c, f_a, df_a from 2bp calculation - */ + atom=moldyn->atom; + dim=&(moldyn->dim); + x=dim->x/2; - d_ij=exchange->d_ij; - d_ij2=exchange->d_ij2; - dist_ij=exchange->dist_ij; + for(i=0;icount;i++) { + if(atom[i].r.x>=dim->x/2||-atom[i].r.x>dim->x/2) { + printf("FATAL: atom %d: x: %.20f (%.20f)\n", + i,atom[i].r.x,dim->x/2); + printf("diagnostic:\n"); + printf("-----------\natom.r.x:\n"); + for(j=0;j<8;j++) { + memcpy(&byte,(u8 *)(&(atom[i].r.x))+j,1); + for(k=0;k<8;k++) + printf("%d%c", + ((byte)&(1<=dim->y/2||-atom[i].r.y>dim->y/2) + printf("FATAL: atom %d: y: %.20f (%.20f)\n", + i,atom[i].r.y,dim->y/2); + if(atom[i].r.z>=dim->z/2||-atom[i].r.z>dim->z/2) + printf("FATAL: atom %d: z: %.20f (%.20f)\n", + i,atom[i].r.z,dim->z/2); + } - f_a=params->exchange.f_a; - df_a=params->exchange.df_a; + return 0; +} - f_c=exchange->f_c; - df_c=exchange->df_c; - - /* d_ij is <= S, as we didn't return so far! */ +/* + * post processing functions + */ - /* - * calc of b_ij (scalar) and db_ij (vector) - * - * - for b_ij: chi, beta, f_c_ik, w(=1), c, d, h, n, cos_theta - * - * - for db_ij: d_theta, sin_theta, cos_theta, f_c_ik, df_c_ik, - * w_ik, - * - */ +int get_line(int fd,char *line,int max) { - v3_sub(&dist_ik,&(ai->r),&(ak->r)); - if(bc) check_per_bound(moldyn,&dist_ik); - d_ik=v3_norm(&dist_ik); + int count,ret; - /* constants for f_c_ik calc */ - if(num==ak->bnum) { - R=params->R[num]; - S=params->S[num]; - } - else { - R=params->Rmixed; - S=params->Smixed; - } + count=0; - /* calc of f_c_ik */ - if(d_ik>S) { - f_c_ik=0.0; - df_c_ik=0.0; - } - else if(d_ikr),&(ak->r)); - if(bc) check_per_bound(moldyn,&dist_jk); - d_jk=v3_norm(&dist_jk); - - beta=*(exchange->beta); - betan=exchange->betan; - n=*(exchange->n); - c=*(exchange->c); - d=*(exchange->d); - h=*(exchange->h); - chi=exchange->chi; - c2=exchange->c2; - d2=exchange->d2; - c2d2=exchange->c2d2; - - numer=d_ij2+d_ik*d_ik-d_jk*d_jk; - denom=2*d_ij*d_ik; - cos_theta=numer/denom; - //cos_theta=v3_scalar_product(&dist_ij,&dist_ik)/(d_ij*d_ik); - sin_theta=sqrt(1.0-(cos_theta*cos_theta)); - theta=acos(cos_theta); - d_theta=(-1.0/sqrt(1.0-cos_theta*cos_theta))/(denom*denom); - d_theta1=2*denom-numer*2*d_ik/d_ij; - d_theta2=2*denom-numer*2*d_ij/d_ik; - d_theta1*=d_theta; - d_theta2*=d_theta; - - h_cos=(h-cos_theta); - h_cos2=h_cos*h_cos; - d2_h_cos2=d2+h_cos2; - - /* some usefull expressions */ - frac1=c2/(d2_h_cos2); - bracket1=1+c2d2-frac1; - if(f_c_ik==0.0) { - bracket2=0.0; - bracket2_n_1=0.0; - bracket2_n=0.0; - bracket3=1.0; - printf("Foo -> 0: "); - } - else { - bracket2=f_c_ik*bracket1; - bracket2_n_1=pow(bracket2,n-1.0); - bracket2_n=bracket2_n_1*bracket2; - bracket3=1.0+betan*bracket2_n; - printf("Foo -> 1: "); + while(1) { + if(count==max) return count; + ret=read(fd,line+count,1); + if(ret<=0) return ret; + if(line[count]=='\n') { + line[count]='\0'; + return count+1; + } + count+=1; } - bracket3_pow_1=pow(bracket3,(-1.0/(2.0*n))-1.0); - bracket3_pow=bracket3_pow_1*bracket3; -printf("%.15f %.15f %.15f\n",bracket2_n_1,bracket2_n); - - /* now go on with calc of b_ij and derivation of b_ij */ - b_ij=chi*bracket3_pow; - - /* derivation of theta */ - v3_scale(&force,&dist_ij,d_theta1); - v3_scale(&temp,&dist_ik,d_theta2); - v3_add(&force,&force,&temp); - - /* part 1 of derivation of b_ij */ - v3_scale(&force,&force,sin_theta*2*h_cos*f_c_ik*frac1); - - /* part 2 of derivation of b_ij */ - v3_scale(&temp,&dist_ik,df_c_ik*bracket1); - - /* sum up and scale ... */ - v3_add(&temp,&temp,&force); - scale=bracket2_n_1*n*betan*(1+betan*bracket3_pow_1)*chi*(1.0/(2.0*n)); - v3_scale(&temp,&temp,scale); - - /* now construct an energy and a force out of that */ - v3_scale(&temp,&temp,f_a); - v3_scale(&force,&dist_ij,df_a*b_ij); - v3_add(&temp,&temp,&force); - v3_scale(&temp,&temp,f_c); - v3_scale(&force,&dist_ij,df_c*b_ij*f_a); - v3_add(&force,&force,&temp); - - /* add forces */ - v3_add(&(ai->f),&(ai->f),&force); - /* energy is 0.5 f_r f_c */ - moldyn->energy+=(0.5*f_a*b_ij*f_c); - - return 0; }